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Aedes aegypti mosquitoes using loop‑mediated 
isothermal amplification (LAMP)
Daniela da Silva Gonçalves1*†, David J. Hooker1†, Yi Dong1, Nathan Baran1, Peter Kyrylos1, 
Iñaki Iturbe‑Ormaetxe1, Cameron P. Simmons1,2 and Scott L. O’Neill1

Abstract 

Background:  The World Mosquito Program uses Wolbachia pipientis for the biocontrol of arboviruses transmitted 
by Aedes aegypti mosquitoes. Diagnostic testing for Wolbachia in laboratory colonies and in field-caught mosquito 
populations has typically employed PCR. New, simpler methods to diagnose Wolbachia infection in mosquitoes are 
required for large-scale operational use.

Methods:  Field-collected Ae. aegypti mosquitoes from North Queensland were tested using primers designed to 
detect the Wolbachia wsp gene, specific to the strain wMel. The results were analysed by colour change in the reac‑
tion mix. Furthermore, to confirm the efficiency of the LAMP assay, the results were compared to the gold-standard 
qPCR test.

Results:  A novel loop-mediated isothermal amplification (LAMP) colorimetric test for the wMel strain of Wolbachia 
was designed, developed and validated for use in a high-throughput setting. Against the standard qPCR test, the 
analytical sensitivity, specificity and diagnostic metrics were: sensitivity (99.6%), specificity (92.2%), positive predictive 
value (97.08%) and negative predictive value (99.30%).

Conclusions:  We describe an alternative, novel and high-throughput method for diagnosing wMel Wolbachia infec‑
tions in mosquitoes. This assay should support Wolbachia surveillance in both laboratory and field populations of Ae. 
aegypti.
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Background
Arboviral diseases transmitted by the mosquito Aedes 
aegypti such as dengue, chikungunya and Zika consti-
tute a significant burden to human health and economic 
development worldwide [1, 2]. This is reflected in the 
nomination by the World Health Organisation of dengue 
as one of the top ten global health threats in 2019. There 
is an urgent need for novel and efficient strategies to con-
trol these diseases [3].

The World Mosquito Program (WMP, https​://www.
world​mosqu​itopr​ogram​.org, formerly known as the Elim-
inate Dengue Program) has developed a novel arboviral 
disease biocontrol strategy utilising the endosymbiotic 
bacterium Wolbachia pipientis. This maternally transmit-
ted bacterium [4] is found in 40–60% of insect species 
worldwide [5–7]. WMP reported the successful introduc-
tion of the wMel strain of Wolbachia into Ae. aegypti in 
northern Australia since 2011 [8]. Subsequently, numer-
ous studies demonstrated that the presence of wMel 
reduces dengue virus [9], Zika [10], chikungunya virus 
[11] yellow fever [11] and Mayaro virus [12] infection and 
replication and, in turn the virus transmission potential 
of the mosquito [13, 14]. wMel has been established in 
field populations of Ae. aegypti in five countries and it 
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has been expanded to more than ten worldwide [15]. The 
mitigation of local dengue outbreaks in northern Aus-
tralia [16] following the establishment of wMel is consist-
ent with the laboratory and modelling expectations of 
this intervention [17].

A duplex TaqManTM qPCR assay has been considered 
the gold-standard reference method for diagnosing Wol-
bachia infection in mosquitoes [5, 18]. The advantages 
of qPCR are clear: it is able to detect multiple genes of 
interest, produce quantitative or qualitative data [19] and 
is scalable. However, these advantages are significantly 
offset by high initial start-up costs and on-going mainte-
nance of equipment, and the complexity of interpreting 
threshold values and amplification curves requires exten-
sive training [20]. This is exacerbated in low-resource set-
tings where the sourcing of laboratory equipment can be 
challenging, and technical expertise is not readily avail-
able. Given the rapid expansion of the World Mosquito 
Program [21, 22], there is a need to develop diagnostic 
tools suitable for resource limited settings.

Loop-mediated isothermal amplification (LAMP) [23, 
24] is a technology potentially suitable for Wolbachia 
diagnostics in resource-limited laboratories [25, 26]. 
LAMP has been adapted as a nucleic acid test with mul-
tiple direct and indirect methods to detect several path-
ogens [27–30]. Hence the purpose of this study was to 
develop and validate the diagnostic accuracy of a colori-
metric LAMP assay for the wMel strain of Wolbachia.

Methods
Mosquito samples
Field-collected Ae. aegypti mosquitoes (n = 3585) were 
collected from BG-Sentinel traps during and after Wol-
bachia establishment in Cairns, Townsville and Innisfail, 
Australia, over an eight-month period from June 2017. 
The DNA from each mosquito was individually crudely 
extracted in the laboratory as previously described [31] 
before being tested by both TaqManTM qPCR [32] and 
LAMP assays.

wMel LAMP reactions
LAMP primers (Integrated DNA Technologies, Singa-
pore, Singapore) were designed to detect the wsp gene 
from wMel and wMelPop-CLA strains using the soft-
ware LAMP Designer 1.02 (PREMIER Biosoft Interna-
tional, Horsham, UK). Individual reaction consisted of 
2X WarmStart® Colorimetric LAMP Master Mix (New 
England BioLabs, Ipswich, USA; Cat# M1800S), prim-
ers according to the manufacturer recommendation 
(Table 1), and 1 μl of target DNA in a total reaction vol-
ume of 17 μl. Reactions for individual samples were per-
formed in 96-well PCR plates (LabAdvantage, Tingalpa, 
Australia; 96-well PCR plates, full skirt, clear). Plates 
were incubated in a thermocycler (BioRad C1000) at 65 
°C for 30 min then held at 12 °C until scoring. Within one 
hour after incubation, colour changes of individual sam-
ples were recorded where pink indicates negative, yellow 
as positive and orange as equivocal (see Additional file 1: 
Figure S1). Results were interpreted by the naked eye 
directly from the reaction plates and also captured with a 
smartphone for data storage.

wMel LAMP assay performance
Target specificity
To assess the specificity of the LAMP assay for wMel, 
multiple Wolbachia trans-infected Ae. aegypti lines 
(wMel, wMelPop-CLA, wRi, wPip and wAlbB) were 
tested, in addition to two tetracycline-treated lines 
(wMel.tet and wAlbB.tet). For each mosquito line, three 
mosquitos were tested and three technical replicates 
were performed, totalling nine reactions per line. Mos-
quitoes were reared and maintained as described [32], 
DNA was crudely extracted as previously described [31] 
and tested in the wMel LAMP assay.

Diagnostic performance comparison
Field-collected samples were tested using both the 
wMel LAMP and the reference TaqManTM qPCR assays 
[32]. The qPCR assay was modified by the use of an LC-
640-tagged wsp gene probe (fluorescence bandwidth 

Table 1  LAMP primers targeting wMel and wMelPop Wolbachia strains

Primer name Primer sequence (5′–3′) Length (bp) Final primer 
concentrations 
(µM)

FIP_wMel/wPop TGT​ATG​CGC​CTG​CAT​CAG​CTT​CGG​TTC​TTA​TGG​TGC​TAA​ 39 1.6

BIP_wMel/wPop GCA​GAA​GCT​GGA​GTA​GCG​TTG​TGT​CAT​GCC​ACT​TAG​ATGG​ 40 1.6

F3_wMel/wPop TGA​TGT​AAC​TCC​AGA​AGT​CA 20 0.2

B3_wMel/wPop CTT​ATT​GGA​CCA​ACA​GGA​TCG​ 21 0.2

LpF_wMel/wPop AGC​CTG​TCC​GGT​TGA​ATT​ 18 0.4

LpB_wMel/wPop CAG​TCT​TGT​TAT​CCC​AGT​GAGT​ 22 0.4
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618–660 nm) to provide improved separation from the 
FAM-tagged housekeeping gene Rps17 (fluorescence 
bandwidth 465–510 nm). Both the qPCR and the LAMP 
results were analysed in blinded fashion, i.e. the interpre-
tation of each assay was performed blind to the outcome 
of the other assay. The LAMP assay diagnostic specificity, 
sensitivity, positive predictive value (PPV) and negative 
predictive value (NPV) calculations were performed with 
any equivocal samples (orange colour) being excluded 
from the calculations. All statistical analysis and calcu-
lations were performed using Medcalc (https​://www.
medca​lc.org/calc/diagn​ostic​_test.php).

Results
wMel LAMP assay performance
Target specificity
The wMel LAMP assay consistently detected only the wsp 
target sequence from the wMel strain in Ae. aegypti, and 
did not amplify the other six Wolbachia strains tested 
(Additional file 2: Figure S2).

Diagnostic performance on field‑caught mosquitoes
A total of 3585 individual field-collected adult mos-
quitoes, sampled between June 2017 to February 2018 
from Cairns, Townsville and Innisfail, were tested by 
both TaqManTM qPCR and LAMP and the compari-
son between the results from each assay is shown in 
Table 2. Amongst the field-caught mosquitoes, 24 (0.7%) 
were found to be non-Ae. aegypti due to non-amplifica-
tion of Ae. aegypti housekeeping Rps17 gene in duplex 
TaqManTM qPCR assay, and hence excluded from the 
analysis.

Relative to the qPCR reference method, LAMP false 
positives were more likely (n = 70) to occur than false 
negatives (n = 8). Equivocal LAMP results were more 
likely to result from qPCR-negative samples than 
qPCR-positive samples. LAMP increased the estima-
tion of wMel positivity by 2%, with an additional 1% of 
total samples producing equivocal results. The sensitiv-
ity of LAMP assay was close to 100% (Table 3) and this 
parameter was confirmed when performed in serially 
diluted field samples up to 1:1000 (data not shown). Also, 
wMel LAMP diagnostic had high positive and negative 

predictive values in relation to the wMel TaqManTM 
qPCR (Table 3).

Discussion
TaqManTM qPCR has been a mainstay for diagnos-
ing Wolbachia infection in mosquitoes despite utilising 
expensive reagents and sophisticated equipment that 
require specialised training and maintenance [20]. Previ-
ous work has shown that there is potential to use LAMP 
for detecting Wolbachia in Ae. aegypti, either for any 
strain, targeting the 16S rRNA gene [25], or specifically 
targeting the wsp gene of the strains wAlbB and wPip 
[26]. Here, we have taken this framework and built on it 
by utilising a pH indicator that possesses the same char-
acteristics but gives a greater resolution to differentiate 
between positive and negative results. The colorimetric 
LAMP assay in this study is an attractive candidate to 
replace qPCR because it does not require sophisticated 
equipment, is qualitative in nature, can easily be analysed 
by visual inspection and can be more cost-effective [33–
35]. In addition, LAMP has been shown to be a reliable 
and robust assay across a range of DNA matrices [36] 
making it ideal for field-caught mosquito homogenates 
that can be highly variable. A small number of results 
were scored as false negatives. These could be explained 
by pipetting errors, or the presence of inhibitors of DNA 
amplification. Inhibitors such as EDTA, or human blood 
in blood-fed female mosquitoes, could block enzyme 
activity [37]. The frequency of false negatives was very 
low (0.22%), and does not affect the robustness of our 
assay.

When considering the implementation of colorimetric 
LAMP as the primary diagnostic method for monitor-
ing the establishment of wMel, certain trade-offs should 
be recognised. First, compared to qPCR there may be an 
increased likelihood of contamination due to the high 
amplification efficiency of LAMP [23, 38]. Secondly, as 
the colorimetric LAMP assay is a single target nucleic 
acid test, it relies on entomologists to accurately identify 
Ae. aegypti mosquitoes from other species and insects 
that might be collected from the field. Thirdly, despite 

Table 2  wMel LAMP positivity and negativity compared to qPCR

qPCR-positive qPCR-negative Total

LAMP-positive 2327 70 2397

LAMP-negative 8 1128 1136

LAMP-equivocal 2 26 28

Total 2337 1224 3561

Table 3  LAMP diagnostic parameters of LAMP-qPCR parallel 
testing

Abbreviation: CI, confidence interval

Diagnostic parameter Value 95% CI

Specificity 94.16 92.67–95.42

Sensitivity 99.66 99.33–99.85

Accuracy 97.79 97.25–98.25

Positive predictive value 97.08 96.36–97.66

Negative predictive value 99.30 98.60–99.65

https://www.medcalc.org/calc/diagnostic_test.php
https://www.medcalc.org/calc/diagnostic_test.php
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its robustness, the LAMP assay can produce equivocal 
results occasionally, presenting as wells with varying hues 
of the colour orange. However, equivocal results were 
rare (typically 1% of the samples) and did not significantly 
impact on the predictive ability of the assay. In general, 
this rate of equivocal findings should not adversely affect 
the chronological and geographical picture of Wolbachia 
establishment. Finally, the wMel LAMP assay is scored 
visually which may be subject to interpretation bias. To 
avoid possible visual biases, a smartphone application has 
been developed to conveniently and reliably score posi-
tivity and negativity, and this can promote consistency 
across multiple and international settings.

Conclusions
In conclusion, the wMel LAMP assay described here 
was sensitive, specific and suitable for high throughput 
application. With these results, we believe the assay is an 
appropriate tool to monitor the progress of wMel Wol-
bachia establishment in field Ae. aegypti populations 
worldwide in order to protect local communities from 
mosquito-borne diseases.

Additional files

Additional file 1: Figure S1. Example of colorimetric LAMP result inter‑
pretation. Results are scored based on colour change. Samples (1) and (2) 
in yellow are positive for wMel Wolbachia; (3) and (4) in pink are negative; 
and (5) and (6) in orange are considered equivocal.

Additional file 2: Figure S1. Specificity of the wMel LAMP assay. LAMP 
reactions were performed using a number of Ae. aegypti lines transin‑
fected with different Wolbachia strains per column, as follows: (1) wMel-
infected, field-collected; (2) wMel, purified gDNA; (3) wAlbB; (4) Ae. aegypti 
tetracycline treated (without wAlbB); (5) wMelPop-CLA; (6) wPip; (7) wRi; 
(8) wMelCS; (9) Ae. aegypti tetracycline treated (without wMel); (10) wild 
type uninfected Ae. aegypti from Townsville, Australia; (11) water; and (12) 
extraction buffer negative control. Eight technical replicates were run for 
controls.
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