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REVIEW

Mosquito antiviral defense mechanisms: 
a delicate balance between innate immunity 
and persistent viral infection
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Abstract 

Mosquito-borne diseases are associated with major global health burdens. Aedes spp. and Culex spp. are primar‑
ily responsible for the transmission of the most medically important mosquito-borne viruses, including dengue 
virus, West Nile virus and Zika virus. Despite the burden of these pathogens on human populations, the interactions 
between viruses and their mosquito hosts remain enigmatic. Viruses enter the midgut of a mosquito following the 
mosquito’s ingestion of a viremic blood meal. During infection, virus recognition by the mosquito host triggers their 
antiviral defense mechanism. Of these host defenses, activation of the RNAi pathway is the main antiviral mechanism, 
leading to the degradation of viral RNA, thereby inhibiting viral replication and promoting viral clearance. However, 
whilst antiviral host defense mechanisms limit viral replication, the mosquito immune system is unable to effectively 
clear the virus. As such, these viruses can establish persistent infection with little or no fitness cost to the mosquito 
vector, ensuring life-long transmission to humans. Understanding of the mosquito innate immune response enables 
the discovery of novel antivectorial strategies to block human transmission. This review provides an updated and con‑
cise summary of recent studies on mosquito antiviral immune responses, which is a key determinant for successful 
virus transmission. In addition, we will also discuss the factors that may contribute to persistent infection in mosquito 
hosts. Finally, we will discuss current mosquito transmission-blocking strategies that utilize genetically modified mos‑
quitoes and Wolbachia-infected mosquitoes for resistance to pathogens.
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Background
Mosquito-borne viruses are a global health priority due 
to frequent resurgences of major epidemics and unprec-
edented geographical expansion in the last few decades 
[1]. The majority of mosquito-borne viruses are RNA 
viruses, with either single or double-stranded RNA that 
have positive or negative polarity. Viruses primarily asso-
ciated with global morbidity and mortality are from the 
following families: Flaviviridae (genus Flavivirus, posi-
tive single-stranded RNA), Togaviridae (genus Alphavi-
rus, positive single-stranded RNA) and Bunyaviridae 
(genus Phlebovirus, negative single-stranded RNA) [2, 

3]. Viruses from the Flaviviridae family include yel-
low fever virus (YFV), dengue virus (DENV), Japanese 
encephalitis virus (JEV), West Nile virus (WNV) and 
Zika virus (ZIKV) [4]. DENV is considered the most 
important mosquito-borne virus, causing 390 million 
dengue infections annually, and is primarily transmitted 
by Aedes aegypti [5]. Dengue epidemics have expanded 
significantly in the last few decades to at least 128 coun-
tries [6]. Aedes aegypti is also the primary vector for 
other flaviviruses, including YFV and ZIKV. Zika virus 
infections are typically mild or asymptomatic, but have 
been linked to Guillain-Barré syndromes in adults. Zika 
virus infections are also a major concern to pregnant 
women and are associated with birth defects, such as 
microcephaly in prenatally infected infants [7]. In Febru-
ary 2016, ZIKV epidemics were declared a public health 
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emergency by the World Health Organization (WHO), 
with 62 countries and territories reporting evidence of 
transmission since its introduction into Brazil in 2015 [8, 
9]. Some flaviviruses, including JEV and WNV, are pri-
marily transmitted by mosquitoes belonging to the genus 
Culex [8, 10]. Members that belong to the Togaviridae 
family include chikungunya virus (CHIKV), Sindbis virus 
(SINV), Semliki Forest virus (SFV) and Ross River virus 
(RRV) [11]. The Anopheles mosquito, which is the main 
vector for the parasite Plasmodium falciparum, is only 
known to transmit O’nyong-nyong virus (ONNV), which 
belongs to genus Alphavirus [12].

Following ingestion of a viremic blood meal from an 
infected vertebrate host, the virus initiates infection 
in the mosquito midgut. However, the dissemination 
of virus from the midgut to salivary glands is not well 
understood. It is postulated that once the virus enters 
midgut epithelial cells, replication occurs in the cells and 
the virus subsequently spreads to the hemocoel [13]. The 
hemocoel is an open body cavity where hemolymph cir-
culates, and thus once the hemolymph is inoculated, the 
virus can spread to other secondary tissues via hemo-
lymph circulation, including the salivary gland, fat body, 
trachea, muscles and neural tissue [14, 15]. The spread of 
virus to the salivary glands is essential for the mosquito 
to be competent for virus transmission to subsequent 
vertebrate hosts [16, 17].

The mosquito innate immune pathways 
in mosquitoes
The mosquito innate immune response is a key determi-
nant for successful transmission of viruses. Unlike the 
mammalian immune system, mosquitoes do not possess 
adaptive immune responses and are dependent on innate 
immunity to fight viral infection. Most of the knowledge 
on insect antiviral innate immunity is elucidated from 
studies of the genetic model insect Drosophila mela-
nogaster [18, 19]. Viral infection triggers the activation of 
innate immunity pathways and leads to the transcription 
of genes responsible for antiviral responses.

The innate immune system of mosquitoes consists of 
two tightly interconnected responses: the cellular and 
humoral defense responses. These two responses act 
together to protect mosquitoes against a wide variety 
of pathogens, including bacteria, yeast and viruses. The 
cellular defense response includes phagocytosis, nodula-
tion and encapsulation of pathogens by hemocytes [20, 
21]. Humoral responses refer to the activation of down-
stream signaling and effector responses, leading to the 
synthesis and secretion of soluble effector molecules, 
such as antimicrobial peptides (AMPs), reactive oxygen 
species (ROS) and components of the phenoloxidase cas-
cade [14, 22–25]. Downstream signaling and humoral 

effector responses will be discussed later in this review. 
These effector molecules are secreted into the hemo-
lymph to control infection caused by invading pathogens 
[26, 27]. Epithelial cells in the mosquito midgut are the 
first line of defense against many pathogens which are 
acquired from blood-feeding and these cells can synthe-
size several AMPs and ROS. Additionally, the fat body of 
the mosquito is the primary site of the humoral response 
via production and secretion of AMPs. The transcription 
of innate immunity genes encoding for AMPs is highly 
dependent on several signaling cascade pathways, includ-
ing the Janus kinase-signal transducer and activator of 
transcription (JAK-STAT), Toll and immune deficiency 
(Imd) pathways [9, 14, 25, 28, 29]. Although activation 
of these pathways has been shown to limit viral replica-
tion, the most robust antiviral defense is the RNA inter-
ference (RNAi) pathway. The RNAi pathway produces 
small RNAs using viral double-stranded RNA as a tem-
plate to ultimately target the viral RNA for degradation, 
thereby inhibiting viral replication [30]. Virus recogni-
tion is mediated by pattern recognition receptors (PRRs) 
that recognize virus-conserved pathogen-associated 
molecular patterns (PAMPs) to initiate innate immune 
responses.

RNA interference (RNAi) pathways
RNA interference (RNAi) is the central antiviral mecha-
nism in insects, particularly in controlling virus infec-
tion through degradation of RNA, also known as RNA 
silencing. The key event in the RNAi pathway is the pro-
duction of small RNAs from long viral double-stranded 
RNA (dsRNA) (Fig. 1) [31]. There are three major types 
of small RNAs: (i) small interfering RNAs (siRNAs), 
(ii) microRNAs (miRNAs), and (iii) PIWI-interacting 
RNAs (piRNAs), with siRNAs being the main antiviral 
responses in mosquito. Mosquito-borne viruses are pri-
marily RNA viruses, with their genomes comprised of 
single-stranded RNA that is either positive-sense (+) 
or negative-sense (−) [30, 32]. During genome replica-
tion, these viruses generate dsRNA as replication inter-
mediates [33]. The siRNA pathway is responsible for the 
major antiviral response [34]. The viral dsRNA binds to 
a Dicer-2-R2D2 complex, which consists of a RNase III 
enzyme, called Dicer-2 (Dcr-2), and an associated pro-
tein, called R2D2 [35]. The dsRNA is cleaved by the 
RNase III domain of Dcr-2 to produce siRNAs of 21–23 
nucleotides (nt) in length [36]. The siRNAs then activate 
the RNAi machinery by binding to another multiprotein 
known as the RNA-induced silencing complex (RISC), in 
which one of the RNA strands is degraded. The remain-
ing single-stranded RNA (ssRNA) then serves as a guide-
strand to detect and degrade cognate viral RNA by host 
endonuclease, Argonaute-2 (Ago2) in a sequence specific 
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manner [31]. One study has demonstrated that silenc-
ing of the RNAi pathway during DENV2 infection in 
Ae. aegypti enhanced virus replication, indicating their 
role in controlling viral replication [37]. Transgenic Ae. 
aegypti mosquitoes with RNAi pathway impairment in 
the midgut were observed to have enhanced SINV rep-
lication in the midgut and increased virus dissemination 
rates [38]. In DENV-infected Ae. aegypti, virus-specific 
siRNAs (20–23 nt), piRNAs (24–30 nt) and unusually 
small RNAs (13–19 nt) were detected [39]. The siRNA 
pathway is also an elicited antiviral response in An. gam-
biae against ONNV infection [40].

miRNAs are a class of endogenous small non-coding 
RNAs (20–25 nt) and play significant roles in the post-
transcriptional regulation of target genes in multiple 
metabolic processes by cleavage of target mRNAs or 
repression of mRNA translation [41, 42]. Similar to the 
siRNA pathway, the miRNA pathway starts with cleavage 
of the dsRNA into small dsRNA, which is loaded into the 
RISC and serves as a guide-strand to detect and degrade 
cognate viral ssRNA. The differences between the siRNA 
and miRNA pathways are the cellular compartments and 
the effector proteins involved in the pathways [43]. The 

transcription, cleavage and processing of siRNA mainly 
take place in the cytoplasm while the miRNA genes are 
transcribed into primary miRNA (pri-miRNA) by host 
polymerase II and are processed into precursor miRNA 
(pre-miRNA) by Drosha in the nucleus. The pre-miRNA 
is then exported into the cytoplasm and further pro-
cessed into a mature miRNA by Dicer-1 and is loaded 
into Ago-1 of the RISC, which guides the binding of the 
complex to complementary mRNA for degradation [44]. 
The antiviral role of miRNAs in mosquitoes has not been 
reported as it was assumed that RNA viruses do not gen-
erate miRNAs. This is because of a lack of access to the 
Drosha for miRNA processing in the nucleus as replica-
tion of most RNA viruses occurs in the cytoplasm [45, 
46]. However, miRNAs from a number of arbovirus mos-
quito vectors have been shown to play a critical role in 
modulating host genes to control viral infection. For 
example, several miRNAs specific for innate immunity 
and multiple metabolic processes required for viral rep-
lication and dissemination were modulated during ZIKV 
[47], DENV [48] WNV [49] and ONNV infections [50].

Besides the well-studied siRNA pathway, recent studies 
have highlighted the importance of the piRNA pathway 

Fig. 1  The RNAi pathways in mosquitoes. The three major types of small RNAs present in mosquitoes are small interfering RNAs (siRNAs), 
microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), with siRNAs being the main antiviral response in mosquitoes
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in the mosquito antiviral response [51–53]. Interestingly, 
the piRNA pathway can mount an antiviral defense with 
a defective siRNA pathway, indicating the redundancy 
of RNAi-mediated antiviral immune responses [51]. 
In contrast to siRNAs, the biogenesis of piRNAs does 
not require Dicer and the size distribution of piRNAs is 
around 24–30 nt [54]. In Drosophila, the biogenesis of 
piRNAs involves three Piwi proteins, including the P-ele-
ment induced wimpy testis (Piwi), Aubergine (Aub) and 
Argonaute 3 (Ago3), to form a piRNA-induced silencing 
complex (piRISC) [55]. The biogenesis starts with the 
primary processing pathway, which is the synthesis of 
primary piRNA pool from single-stranded precursors. 
The primary piRNAs can be associated with the Aub and 
Piwi protein. Interestingly, the primary pool of piRNAs 
can undergo an amplifying process known as the ‘ping-
pong’ cycle to further amplify the Aub-bound piRNAs to 
refine the piRNA pool. This amplification process serves 
to ensure an efficient piRNA-mediated silencing of target 
RNA [52–54]. The presence of virus-specific piRNAs was 
detected in Ae. aegypti and Ae. albopictus during CHIKV 
infection [56] and in SINV infected Aedes cells [53]. Deep 
sequencing data reported the presence of SFV-derived 
piRNAs and silencing of PIWI 4 protein resulted in 
increased SFV replication and virion production, sug-
gesting the importance of the piRNA pathway in antiviral 
immunity [57].

Viral DNA produced during replication is important 
for mosquito survival and persistent infection
The mosquito immune response is implicated in virus 
persistence [30, 58, 59]. Despite activation of mosquito 
antiviral immune responses during viral infections, 
viruses are not completely eliminated from the mos-
quitoes. Instead, a persistent infection, with little or no 
cost of fitness to the host, is established in mosquitoes, 
which makes them efficient vectors for viral diseases. 
However, the mechanisms by which viruses maintain 
persistent infection in mosquitoes are poorly under-
stood. Recent studies have demonstrated that virus-
derived DNA (vDNA) generated during viral infection 
are important for mosquito survival and persistent infec-
tion [30, 58]. The majority of mosquito-borne viruses are 
RNA viruses, and upon infection, viral RNA or truncated 
forms of the viral genome produced during virus replica-
tion, also known as the defective viral genomes (DVGs), 
are reverse transcribed to vDNA by the activity of host 
cellular reverse transcriptase [58]. Although the biogen-
esis and regulation of vDNAs in mosquitoes has not been 
well studied, it has been reported that Dcr-2 regulates the 
production of vDNA from DVGs as illustrated in Fig. 1. 
Dcr-2 is a multifunctional protein and vDNA production 
is regulated by its DExD/H helicase domain [58]. vDNAs 

can be detected not only in mosquito cell culture dur-
ing infection, but also in Ae. aegypti and Ae. albopictus 
during CHIKV and ZIKV infections [30, 59]. The vDNAs 
then stimulate the RNAi machinery to control viral rep-
lication. Interestingly, vDNA is sufficient to produce siR-
NAs to elicit antiviral response when challenged with a 
cognate virus. Furthermore, inhibition of vDNA produc-
tion results in extreme susceptibility to viral infections 
[30].

Other innate immune pathways: JAK‑STAT, Toll and Imd 
pathways
In addition to the RNAi pathway, there are other 
innate immune pathways involved in protecting mos-
quitoes against viral infection, including the JAK-
STAT, Toll and Imd pathways (Fig.  2). In response to 
viral infection, activation of these pathways initiates 
the formation of a multiprotein complex consisting of 
protein kinases, transcription factors and other regu-
latory molecules to regulate the expression of down-
stream innate immunity genes [14, 22, 60]. These 
include genes that encode for AMPs and key factors 
that regulate the innate immune response to viruses. 
AMPs are immune-inducible peptides that are potent 
and rapid-acting immune effectors with antimicrobial 
activities [61]. A wide spectrum of AMPs have been 
reported in insects during infection with Gram-neg-
ative and Gram-positive bacteria, filamentous fungi 
and yeast [19, 61]. These AMPs carry out both direct 
killing and innate immune modulation (recruitment 
and activation of immune cells) to limit invading path-
ogens [19, 62, 63]. Most studies on the regulation of 
AMPs during infection are based on Drosophila, and 
the regulation of AMPs in mosquitoes is poorly under-
stood. AMPs vary among different mosquito species 
and the induction of AMPs is regulated by multiple 
immune signaling pathways and is highly dependent 
on the type of pathogen that elicited the response. In 
Ae. aegypti, 17 AMPs have been identified, and they 
belong to five different families: defensins (cysteine-
rich peptides), cecropins (α-helical peptides), dip-
tericin (glycine-rich peptides), attacin (glycine-rich 
peptides) and gambicin (cysteine-rich peptides) [61, 
63, 64]. The mode of killing of AMPs is often specific 
for different microorganisms. Defensins are active and 
highly toxic against Gram-positive bacteria and para-
sites by disrupting the membrane permeability barrier, 
thereby causing loss of motility [65]. As for cecropins, 
these positively charged peptides bind to the lipids in 
the membrane that are negatively charged, thus chang-
ing the biological structure of membranes. Other pos-
sible modes of killing by cecropins include inhibition 
of nucleic acid and protein synthesis and inhibition 
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of enzymatic activity [66]. Defensins and cecropins 
have been found to be expressed in the midgut, tho-
rax and abdominal tissues of An. gambiae mosquitoes 
and are induced during infection with parasite [67]. In 
the same mosquito species, gambicin has been found 
to be induced by parasites in the midgut, fat body and 
hemocytes [64]. However, their role in regulating anti-
viral immune response is not completely understood. 
In Ae. aegypti, cecropins are upregulated in DENV-2 
infected mosquitoes [66]. Furthermore, cecropins 
exhibit antiviral activity against DENV and CHIKV 
[66]. In Culex mosquitoes, Vago is a secreted peptide 
regulated by the JAK-STAT pathway and overexpres-
sion of Vago reduces the viral load of WNV in mos-
quitoes [28]. During SINV infection in Drosophila, two 
AMPs, regulated by the Imd and the JAK-STAT path-
ways, namely the attacin C and diptericin B, control 
viral RNA synthesis and knocking down of these genes 
increases viral load in flies [10].

The JAK‑STAT pathway
The JAK-STAT pathway was originally identified in Dros-
ophila and was shown to have an active role in antiviral 
defense against Drosophila C virus (DCV) and Flock 
House virus (FHV) [18]. Consistent with Drosophila, 
mosquitoes also express the cytokine receptor, Dome-
less (Dome) and the tyrosine kinase Hopscotch (Hop), 
which together induce the JAK-STAT pathway. The 
mechanism of the Dome receptor is similar to the mam-
malian JAK-STAT pathway. The ligand binds to Dome, 
which then undergoes a conformational shift leading to 
self-phosphorylation of Hop (JAK). Activated Hop phos-
phorylates Dome, which forms a docking site for cyto-
solic STATs. Recruitment of STATs by the Dome/Hop 
complex leads to the phosphorylation and release of the 
STATs. The phosphorylated STATs dimerize and translo-
cate to the nucleus where they activate transcription of 
specific effector genes, such as the virus-induced RNA 
1 (vir-1) gene, that has a role in antiviral immunity [18, 
22]. Through reverse genetic approaches and functional 

Fig. 2  The JAK-STAT, Toll and immune deficiency (Imd) pathways in mosquitoes. Activation of the JAK-STAT, Toll and Imd pathways initiates the 
formation of a multiprotein complexes consisting of protein kinases, transcription factors and other regulatory molecules to regulate the expression 
of downstream innate immunity genes, such as the genes that encode for AMPs and key factors that regulate the innate immune system
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studies, the JAK-STAT pathway has been shown to medi-
ate increased resistance to DENV and ZIKV in infected 
Ae. aegypti [22, 25]. Genetically modifying Ae. aegypti 
to overexpress Dome and Hop renders the mosquitoes 
more resistant to DENV infection, but not to CHIKV and 
ZIKV infections. These studies suggest that Ae. aegypti 
possess varied molecular responses to different viruses 
[68].

The Dome receptor is the most well characterized 
cytokine receptor in mosquitoes; however, evidence sug-
gests that other cytokine receptors are present which 
also activate the JAK-STAT pathway. For example, in 
Culex mosquitoes, a secreted peptide known as Vago was 
upregulated in response to WNV infection, subsequently 
activating the JAK-STAT pathway to control infec-
tion and reduce viral load [28]. However, knockdown of 
Dome did not inhibit signaling of the JAK-STAT pathway, 
indicating that Vago activated JAK-STAT via another 
unknown receptor [28].

Transgenic Ae. aegypti mosquitoes have been used to 
investigate the role of the JAK-STAT pathway in viral 
infection. Through RNAi-mediated gene silencing of 
the tyrosine kinase complex, Dome and Hop increased 
DENV infection, whereas knockdown of PIAS, a known 
negative regulator of the JAK-STAT pathway, decreased 
DENV infection [22]. However, although the JAK-STAT 
pathway is increased in response to DENV infection in 
the mosquito, strains that were either resistant or suscep-
tible to DENV infection did not show a difference in viral 
infection, indicating that the pathway was not involved in 
viral susceptibility to DENV [69].

The majority of investigations into the JAK-STAT path-
way in mosquito immunity have involved dengue infec-
tion; however, pathway activation in response to other 
viruses and downstream mechanisms may differ for each 
virus. Transgenic overexpression of Hop in the midgut 
decreased DENV2 infection and dissemination; how-
ever, for ZIKV, dissemination was only decreased at day 7 
post-infection and infection was not altered [68]. In con-
trast to ZIKV and DENV, the JAK-STAT pathway was not 
activated by CHIKV infection [70], nor was it involved 
in viral dissemination [68]. Furthermore, in human host 
cells, CHIKV non-structural protein 2 has been shown 
to inhibit interferon signaling via inactivation of the 
JAK-STAT pathway [71]; however, the precise mecha-
nism of action has not been elucidated. Together, this 
raises the possibility that the CHIKV inhibitory mecha-
nism acts directly on the JAK-STAT pathway and hence 
may be conserved in the mosquito immune system. Just 
as CHIKV may inhibit the JAK-STAT pathway, SFV has 
also been shown to downregulate transcription of the 
JAK-STAT pathway [9]. Thus, both CHIKV and SFV 
have developed mechanisms to avoid activation of this 

pathway and the downstream effectors of the JAK-STAT 
pathway are differentially affected between the viruses.

The NF‑κB‑like signaling pathways: Toll and Imd pathways
The Toll and Imd pathways are two distinct innate 
immune pathways very similar to the mammalian 
NF-κB signaling pathway, which is the key regulator 
in the production of AMPs. The Toll pathway was first 
reported in Drosophila, and is known for its role in 
innate immunity against pathogens, such as fungi and 
Gram-positive bacteria [72]. In contrast, the Imd path-
way is activated during infection by Gram-negative bac-
teria [72]. Both Toll and Imd pathways are activated by 
pathogens via binding of PAMPs to the host’s PRRs, 
which leads to a cascade of events to activate immune 
effector genes for production of AMPs. The Toll path-
way is initiated by cleavage of the cytokine Spätzle 
(Spz), which is a ligand that binds to the Toll transmem-
brane receptor. Activated Toll triggers signaling through 
MyD88, Tube (adaptor proteins associated with Toll) 
and the Pelle kinase. Subsequently, the negative regula-
tor of the Toll pathway, Cactus, is phosphorylated and 
undergoes proteasomal degradation that cause the 
translocation of the transcription factor Relish 1 (Rel1) 
from the cytoplasm to the nucleus and binding to κB 
motifs on the promoters of many AMPs genes, such as 
Diptericin and Cecropin that are active against fungi 
and Gram-positive bacteria [73]. While in the Imd path-
way, activation of the pathway leads to degradation of 
the negative regulator Caspar, which leads to the trans-
location of Relish 2 (Rel2) to the nucleus, resulting in 
the transcription of AMPs [14, 74].

The majority of studies on the Toll and the Imd path-
ways are focused mainly on their antifungal and antibac-
terial functions in mosquitoes [73]; however, their role 
in antiviral immune response is not well characterized. 
Comparative genomic analysis between Drosophila and 
mosquitoes revealed that the key components of the Toll 
and the Imd pathways are conserved between these two 
species. The homologues of genes from the Toll and the 
Imd pathways can be found in Ae. aegypti, Cx. quinque-
fasciatus and An. gambiae. During DENV infection of 
Ae. aegypti, the genes in the Toll pathway (GNBP, Toll5A 
and MYD88 genes) were upregulated in the salivary 
glands. Silencing of MYD88, caused a slight increase of 
DENV viral titre in the midgut [66]. Upon viral infec-
tion, Rel1 and its downstream antimicrobial peptides is 
upregulated to control infection against DENV [14, 75] 
and SINV [24], whereas in Culex mosquitoes, following 
WNV infection, the transcription factor Rel2 of the Imd 
pathway activates the secretion of an antiviral peptide 
against WNV infection [28].
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The Delta‑Notch signaling pathway: a complementary 
pathway in regulating antiviral immunity
The evolutionarily conserved signaling pathway, Delta-
Notch, plays crucial roles in embryonic development, 
stem cell maintenance and adult tissue renewal [76]. 
While the Delta-Notch signaling pathway was well 
described for its role in developmental processes, a recent 
study has reported a new role of the Delta-Notch sign-
aling pathway in antiviral innate immunity in the mos-
quito, by limiting the replication of DENV in Ae. aegypti 
mosquitoes [77]. Notch is a transmembrane receptor and 
signaling depends on the binding of Delta ligands, which 
activates the proteolysis of the Notch receptor, releas-
ing an active fragment, known as the Notch intracellular 
domain (NICD) that enters the nucleus to activate down-
stream target genes [76, 78]. During DENV infection, 
components of this pathway including Delta, Notch and 
Hindsight genes were also shown to be upregulated in Ae. 
aegypti mosquitoes [77]. Although the exact mechanism 
of how this signaling pathway limits DENV replication 
is not known, this study showed that activation of this 
signaling pathway induced endoreplication, in which cells 
undergo many rounds of DNA replication without mito-
sis to increase dramatically the genomic DNA content 
in the cells. Induction of endoreplication increased the 
number of gene transcripts that are involved in control-
ling viral spread [77].

The cellular immune mechanisms in mosquitoes
The cellular defense response includes phagocytosis, 
nodulation and encapsulation of pathogens by hemo-
cytes [20]. Furthermore, hemocytes also elicit humoral 
responses by activation of downstream signaling as pre-
viously mentioned and their effector responses lead to 
the synthesis and secretion of soluble effectors molecules 
such as AMPs and components of the phenoloxidase 
cascade into the hemolymph to control infection against 
invading pathogens [79].

Hemocyte‑mediated antiviral immunity in mosquitoes
Hemocytes are cells that circulate within hemolymph, 
and are permissive to viral infection including DENV 
[15], SINV [80] and WNV [81]. The hemocyte-mediated 
immune response is immediate and includes pattern 
recognition, phagocytosis, nodulation, melanization, 
production of antimicrobial peptides and initiation of 
signaling cascades for cytotoxic effectors to clear infec-
tion [20, 80, 82].

Hemocytes exist in two forms: circulating (circulate 
within hemolymph) and sessile (tissue resident). Fur-
thermore, different populations of hemocytes have been 
described in mosquitoes. Studies have categorized mos-
quito hemocytes into prohemocytes, oenocytoids and 

granulocytes [83]. Granulocytes are the most abundant 
and constitute 80–95% of circulating hemocytes. Granu-
locytes are phagocytic, and upon activation they rapidly 
adhere to and engulf foreign particles [84]. Oenocytoids 
(~10% of circulating hemocytes) are the main producer 
of components of the phenoloxidase (PO) cascade in 
response to infection [85]. The PO cascade is a humoral 
immune response initiated by pathogen-associated pat-
tern recognition molecules and leads to proteolytic 
processing of prophenoloxidase (PPO) to PO, which cat-
alyzes the formation of melanin around invading patho-
gens [86]. The reaction intermediates generated from the 
proteolytic processes have been shown to inactivate SFV 
[86]. SFV has been shown to activate PO-based melaniza-
tion cascade in mosquito cells, which results in inhibition 
of virus spread indicating that this pathway mediates the 
antiviral response in mosquitoes [86]. Nodulation occurs 
when multiple hemocytes bind to bacterial aggregates to 
form a multicellular sheath and the nodule formation is 
the main insect cellular defense reaction to clear a large 
number of bacteria from the hemolymph [20, 21].

Fat body‑mediated antiviral response of mosquitoes
The insect fat body is an organ that functions analogous 
to both adipocytes and livers in mammals. The fat body 
is crucial in regulating metabolism and growth in insects, 
and is responsible for energy storage, synthesis and secre-
tion of hemolymph proteins and circulating metabolites 
[87]. A recent study reported that the JAK-STAT pathway 
is activated in the fat body of Ae. aegypti during dengue 
virus infection [68]. Overexpression of the Dome or Hop 
gene in the fat body of Ae. aegypti, resulted in inhibition 
of DENV infection in these transgenic mosquitoes, but 
this inhibitory effect was not observed for CHIKV and 
ZIKV, indicating that different viruses elicited the JAK-
STAT pathway differently [68].

As the fat body is important in mediating antiviral 
responses in mosquitoes, its components such as cel-
lular lipids may play a role as well. It has been shown 
that cellular lipids are manipulated by flaviviruses to 
facilitate viral replication. In Ae. aegypti cells, SINV and 
DENV infection resulted in accumulation of lipid drop-
lets (LDs) [88]. LDs are made up of a monolayer of fatty 
acid and other structural proteins including Perilipin 1, 
2 and 3. LDs are found in the fat body tissue of mos-
quitoes and their main function is maintaining lipid 
homeostasis, by regulating biogenesis and degradation 
of LDs [88]. LDs serve as a reservoir of lipids which are 
important for anchoring the viral replication machin-
ery for efficient viral replication [89]. Exploitation of 
lipid metabolism has also been reported in WNV, indi-
cating the importance of lipids in pathogenesis [90]. 
Genes involved in LD biogenesis and lipid metabolism 



Page 8 of 12Lee et al. Parasites Vectors          (2019) 12:165 

are upregulated upon DENV infection [88]. Interest-
ingly, activation of immune signaling pathway, includ-
ing the Toll and the Imd pathways enhanced LD content 
in mosquito midgut [88]. During DENV infection, fatty 
acid synthase is recruited to the site of replication by 
DENV nonstructural protein 3 to stimulate fatty acids 
synthesis [91]. Furthermore, inhibition of fatty acid syn-
thase decreased DENV viral titers and thus serve as a 
potential antiviral target to control viral infections [92].

Autophagy to promote antiviral immunity
Autophagy is an evolutionarily conserved process that 
sequesters and mediates the degradation of cellular 
components, such as proteins and organelles, to main-
tain cellular and tissue homeostasis [93]. Autophagy 
involves the sequestration of damaged organelles or 
misfolded proteins by forming double-phospholipid 
membrane vesicles, known as autophagosomes. The 
autophagosomes then fuse with lysosomes to mediate 
the degradation of sequestered contents within the lys-
osome [93, 94]. In addition to the role of autophagy in 
maintaining cellular and tissue homeostasis, a protec-
tive role for autophagy against intracellular pathogens 
including viruses has been shown in mammalian sys-
tems and, to a lesser extent, in Drosophila [95–97]. In 
Drosophila, antiviral autophagy against vesicular sto-
matitis virus (VSV) and Rift Valley fever virus (RVFV) 
is activated through pathogen recognition by the Toll-7 
transmembrane receptor. The activation of Toll-7 leads 
to the activation of autophagy via the phosphatidylino-
sitol 3-kinase (PI3K)-Akt-signaling pathway, which is 
an autophagy pathway that senses the status of nutrient 
availability. Upon activation, autophagy is able to limit 
viral replication in flies. Furthermore, loss of Toll-7 
leads to an increase in viral RNA production in Dros-
ophila cell line [97] and Toll-7 mutant flies which are 
more susceptible to RVFV infection [95, 96], suggest-
ing that there is a role for autophagy in controlling viral 
replication. Due to the conservation of autophagy, it is 
postulated that the autophagy pathway is also involved 
during viral infection of mosquitoes. For example, dur-
ing DENV infection, autophagy is activated to gener-
ate energy for viral replication. In particular, autophagy 
regulates lipid metabolism by degradation of the lipid 
droplets to release lipids that undergo oxidation to gen-
erate energy for viral replication [91, 98]. However, the 
role of autophagy during virus infection of mosquitoes 
is still largely unknown.

Current mosquito control strategies
The prevention and control of mosquito-borne diseases 
is primarily reliant on vector control measures, such as 
the use of insecticides, mosquito nets and environmental 

management to limit human-vector contact [5]. Over the 
last decade, approaches such as the release of Wolbachia-
infected mosquitoes [99, 100] and genetically modified 
mosquitoes [101, 102] into native mosquito populations 
have been undertaken. These approaches aim to either 
reduce viral capacity in vector populations or reduce 
reproductive success.

Wolbachia‑infected mosquitoes
Wolbachia pipientis are symbiotic bacteria, vertically 
transmitted from mother to offspring, and exist natu-
rally in an estimated 60% of insects [103]. Recently, the 
wMel strain of Wolbachia has been introduced into Ae. 
aegypti, which is not a natural host of Wolbachia, in an 
attempt to limit their ability to transmit important arbo-
viruses including DENV, CHIKV and ZIKV. To date, ten 
countries, including Australia, Brazil and Vietnam, have 
participated in field trials for DENV control by releas-
ing Wolbachia-infected mosquitoes into the wild [104]. 
In controlled field releases in Cairns, Australia, the wMel 
strain of Wolbachia was successfully established in natu-
ral populations of Ae. aegypti mosquitoes [100]. Several 
years later, the Wolbachia infection rate in the mosquito 
population remains high [105]. Additionally, Wolbachia-
infected mosquitoes from the same field populations 
continue to demonstrate reduced susceptibility to DENV 
under laboratory conditions [106]. Field and clinical stud-
ies in Vietnam showed that wMel-infected Ae. aegypti are 
not permissive to DENV infection when the mosquitoes 
were fed with patient-derived viremic blood meals [107].

Despite the potential of Wolbachia as a useful and 
effective tool to combat mosquito-borne diseases, the 
mechanisms of how Wolbachia mediate viral replica-
tion in mosquitoes remains largely unclear. However, 
there are likely to be multiple mechanisms involved: (i) 
priming the immune system by inducing reactive oxy-
gen species (ROS) and activating innate immune genes 
to secrete effector proteins such as Vago to limit viral 
replication [108, 109]; (ii) direct competition for cho-
lesterol between viruses and Wolbachia [110]; and (iii) 
perturbations in vesicular trafficking, lipid metabolism, 
intracellular cholesterol trafficking and in the endoplas-
mic reticulum (ER) [111]. Despite promising results 
from field trials, many concerns need to be addressed 
before Wolbachia-infected mosquitoes can become a 
safe and effective strategy to suppress arbovirus trans-
mission. For example, one study has reported that 
Wolbachia-infection of Ae. aegypti increased the infec-
tion rates of other insect-specific flaviviruses that are 
not medically important [112]. Secondly, Wolbachia-
based mosquito control might not be effective for other 
mosquito species. For example, Wolbachia-infection 
of Cx. tarsalis, which is a novel WNV vector in North 
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America, enhanced the infection rate of WNV [113]. 
Additionally, Wolbachia-infected Anopheles mos-
quitoes exhibited an enhanced susceptibility to Plas-
modium infection, thus increased the risk of malaria 
transmission by these mosquitoes [114].

CRISPR/Cas9 genetically‑modified mosquitoes
The clustered regularly interspaced short palindromic 
repeats/CRISPR associated sequence 9 (CRISPR/Cas9) 
system has recently emerged as a powerful genome 
editing tool to combat vector-borne diseases [115, 
116]. In addition, the use of the CRISPR/Cas9 system 
to genetically modify mosquitoes to combat mosquito-
borne diseases is steadily growing. For example, the 
body of literature on the development of highly effec-
tive CRISPR/Cas9 systems has expanded significantly 
especially within the last five years since the emergence 
of this system. Briefly, the CRISPR/Cas9 system com-
prises two components: (i) a small RNA (17–20 bases) 
known as single guide RNA (sgRNA) that is designed 
to complement the target genomic DNA sequence; and 
(ii) Streptococcus pyogenes Cas9 nuclease (SpCas9) that 
binds and cleave the double-stranded target DNA in 
the presence of a short conserved sequence (2–6 nucle-
otides), known as protospacer-associated motif (PAM) 
[115]. The SpCas9 endonuclease complexes with the 
sgRNA and induces double-stranded DNA breaks at 
the target DNA sequence [115]. The PAM sequence for 
SpCas9 is NGG, and SpCas9 will not bind to the target 
DNA sequence if PAM is absent at the site. Interest-
ingly, the frequency of NGG in the Ae. aegypti genome 
is relatively high (approximately once every 17 base 
pairs). This feature makes CRISPR/CAS9 an efficient 
and reliable system to make precise changes to the 
genome of this vector species [115, 117].

Recently, CRISPR/Cas9-based gene editing has been 
widely used as an efficient tool to modify the mosquito 
genome of An. stephensi [116], Ae. aegypti [115], Cx. 
quinquefasciatus [118] and Cx. pipiens [119]. More 
recently, CRISPR/Cas9 has been used to generate a 
knockout mutant of the fibrinogen-related protein 1 
(FREP1) gene of An. gambiae, which encodes for a spe-
cific immune protein that is important for parasite’s 
midgut infection stage to block malaria transmission 
[101].

Conclusions
Currently there are no suitable vaccines nor cure for 
the majority of mosquito-transmitted diseases. Vector 
control remains the gold standard strategy to block dis-
ease transmission. More recently, genetically-modified 
mosquitoes have been developed and field tests are 

ongoing, as potential alternative strategies to control 
disease transmission by mosquitoes. However, these 
strategies are not perfect and insufficient to block 
transmission. Furthermore, as these strategies are still 
novel, little is known about how viruses and mosquito 
defense mechanisms may evolve to reduce the effi-
cacy of these strategies. More extensive knowledge of 
how mosquitoes respond to infection, how the innate 
immune system controls virus infection, other host fac-
tors that facilitate viral replication, how viruses persist 
in mosquitoes and how different mosquito species or 
strains vary in permissiveness to virus infection at the 
molecular level could improve and maximize the effec-
tiveness of current strategies and could possibly result 
in identification of new molecular targets for new vec-
tor control strategies.
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