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Abstract 

Background:  Mosquito-borne pathogens contribute significantly to the global burden of disease, infecting millions 
of people each year. Mosquito feeding is critical to the transmission dynamics of pathogens, and thus it is important 
to understanding and interpreting mosquito feeding patterns. In this paper we explore mosquito feeding patterns 
and their implications for disease ecology through a meta-analysis of published blood meal results collected across 
Australia from more than 12,000 blood meals from 22 species. To assess mosquito-vertebrate associations and identify 
mosquitoes on a spectrum of generalist or specialist feeders, we analysed blood meal data in two ways; first using a 
novel odds ratio analysis, and secondly by calculating Shannon’s diversity scores.

Results:  We find that each mosquito species had a unique feeding association with different vertebrates, suggesting 
species-specific feeding patterns. Broadly, mosquito species could be grouped broadly into those that were primar-
ily ornithophilic and those that fed more often on livestock. Aggregated feeding patterns observed across Australia 
were not explained by intrinsic variables such as mosquito genetics or larval habitats. We discuss the implications for 
disease transmission by vector mosquito species classified as generalist-feeders (such as Aedes vigilax and Culex annu-
lirostris), or specialists (such as Aedes aegypti) in light of potential influences on mosquito host choice.

Conclusions:  Overall, we find that whilst existing blood meal studies in Australia are useful for investigating mos-
quito feeding patterns, standardisation of blood meal study methodologies and analyses, including the incorporation 
of vertebrate surveys, would improve predictions of the impact of vector-host interactions on disease ecology. Our 
analysis can also be used as a framework to explore mosquito-vertebrate associations, in which host availability data is 
unavailable, in other global systems.
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Background
Mosquitoes are the most important disease vector glob-
ally, responsible for infecting millions of people and 
animals annually with pathogens that influence human 
health, livestock and economic trade and wildlife bio-
diversity [1]. Mosquitoes comprise a broad taxonomic 
group with more than 3000 species recognised across 40 
genera [2], but not all species are involved in pathogen 
transmission. Pathogen transmission requires a mosquito 

to take a blood meal from a source host and then to sub-
sequently feed on a recipient host. Understanding the 
feeding patterns of mosquitoes can inform disease man-
agement strategies (such as targeted vector control to 
reduce vector-host contact) and can contribute to mod-
els forecasting future disease risk in human and animal 
populations [3].

Mosquito host choice is complex; both intrinsic and 
extrinsic factors can influence feeding preference [3, 4]. 
Intrinsic variables can include genetics, whereby individ-
uals are more likely to feed on the same host as previous 
generations [5, 6], and the nutritional state of the mos-
quito, with nutrition-poor individuals being more likely 
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to feed on non-preferred hosts [4]. Extrinsic host-seeking 
behaviour is predominantly guided by detection of heat 
and carbon dioxide (CO2), and is also affected by host 
abundance, biomass, various odorants and chemicals 
that are released by hosts, and host defensive behaviour 
[7–13]. Other extrinsic factors may include climatic vari-
ables such as relative humidity, along with habitat charac-
teristics that determine availability and diversity of hosts 
[12, 14]. In addition to these broad intrinsic and extrinsic 
variables, evidence suggests that mosquitoes may adjust 
their host-seeking behaviours based on positive and neg-
ative experiences, in essence, adapting feeding choices 
according to their individual circumstances [4].

Mosquito-host relationships in Australia are largely 
understudied. The island biogeography of Australia 
and its varied climatic zones and bioregions promote a 
unique endemic biodiversity for mosquito and vertebrate 
host species. Along with a high diversity of native marsu-
pials, placental mammals and birds in Australia, there are 
more than 300 species of mosquitoes described, many of 
which are unique to the continent [15]. The interactions 
between these populations of mosquitoes and vertebrate 
hosts across different climatic zones provide opportuni-
ties for maintenance and emergence of mosquito-borne 
pathogens. The transmission of numerous medically-
important arboviruses has been documented in Australia 
to date, including dengue (DENV), Ross River (RRV), 
Murray valley encephalitis (MVEV), Barmah Forest 
(BFV) and Kunjin [16] viruses.

Taking into account the complexity of contributing fac-
tors, critical analysis of the feeding patterns of mosqui-
toes may represent an important approach to explore 
disease risks for both human and animal populations. 
This study aims to synthesise existing literature describ-
ing blood meal studies in Australia, specifically assess-
ing the most likely mosquito-host associations, and the 
diversity of feeding patterns for common mosquito spe-
cies. In light of these feeding patterns, we discuss broad 
implications for disease ecology.

Methods
Data collection
Original research articles were systematically searched 
by using the following search terms in different combi-
nation across five search engines (Web of Science, Pro-
Quest, Science Direct, PubMed and Google Scholar): 
‘bloodmeal*’, ‘blood meal’, blood-meal’, ‘feeding’, ‘habit’, 
‘pattern*’, ‘preference*’, ‘interaction*’, ‘mosquito*’, ‘vec-
tor*’, ‘vector-host’, ‘host*’, ‘vertebrate*’, ‘animal*’ and ‘Aus-
tralia’. The asterisk (*) operator was used as a wildcard to 
search for all possible variations of keywords. We then 
manually searched the reference lists of papers to iden-
tify additional relevant articles. Papers were included in 

this review if they were original peer-reviewed research 
articles, undertaken on mainland Australia (e.g. [17] was 
undertaken in Badu Island in the Torres Strait and thus 
excluded), analysed field-collected mosquitoes that had 
fed under natural conditions on free-living vertebrates 
(e.g. [18] used tethered animal baits and was excluded), 
and assessed at least 3 potential vertebrate species (e.g. 
[19] only tested for a single flying fox species, and was 
excluded).

The following information was extracted from identi-
fied articles: the geographical area in which the study 
took place, including site location, bioregion of each site 
(as defined by Thackway & Cresswell [20]), the mosquito 
collection method used (including the year, month and 
collection method/trap type), and the methods used to 
determine the vertebrate origin of blood meals (includ-
ing the vertebrate species investigated, the source of 
vertebrate reference samples and laboratory technique). 
Additional notes were made on stated limitations (if any) 
of each paper and whether data on vertebrate abundance 
and diversity was included. A database of blood meal 
results was populated and is reported in Additional file 1: 
Table S1.

Data analysis
Mosquito‑vertebrate associations
Odds ratios were used to calculate the direction (positive 
or negative) and strength of associations in the database 
between each mosquito species and vertebrate taxon. For 
this analysis, the blood meal origin data compiled from 
the literature were aggregated such that each vertebrate 
species was grouped into the broader taxonomic groups 
of humans, Carnivora (cats, dogs and foxes), Aves (all 
birds), Diprotodontia (all possum and kangaroo species), 
Artiodactyla (cows, sheep, pigs and goats) and Perisso-
dactyla (horses). Flying fox [21], rodent [22, 23] and rab-
bit [22, 24] species were excluded from this analysis, as 
the sample size of blood meals from these species was too 
small (either one or two studies, with these species com-
prising less than 9% of blood-meal origins within each). 
To be included in the analysis, mosquito species needed 
to meet all minimum data criteria of (i) their blood meal 
origins being reported more than twice in the literature; 
and (ii) having an arbitrary minimum of 35 blood meals 
identified.

Log odds ratios were calculated between each mos-
quito and vertebrate taxon using two by two feeding 
frequency tables, derived from the raw data (Additional 
file 1: Table S2). Positive log odds ratios indicate a posi-
tive feeding association between a given mosquito species 
and vertebrate host, whereby there is a higher likelihood 
than random chance that a blood meal of that mosquito 
species would originate from the given vertebrate taxon. 
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The greater the log odds ratio, the stronger the feeding 
association. Conversely, a negative log odds ratio suggests 
a negative feeding association, whereby there is a lower 
likelihood that a blood meal from the mosquito species 
would originate from the given vertebrate taxon. Log 
odds ratios close to 0 indicate no association between the 
mosquito species and vertebrate taxon.

The log odds ratios were plotted in a heatmap chart 
and sorted using hierarchical clustering. The cluster-
ing grouped mosquitoes with similar feeding patterns 
together by similarity in log odds ratio across all verte-
brate taxa. All calculations and graphs were generated 
using R software, with packages gplots and RColorBrewer 
[25] with modified script from Raschka [26].

Mosquito feeding diversity
We used the Shannonʼs diversity index to place mosquito 
species on a spectrum between generalist or specialist 
feeders. The inclusion criteria for this analysis were that 
each mosquito species needed to have fed on greater 
than three vertebrate species and had to have a minimum 
number of 10 blood meals analysed. Vertebrates were 
not aggregated by taxonomic group in this analysis but 
remained at the level reported in the literature (mostly as 
species but, for the case of birds, several studies reported 
as class). A total of 15 vertebrate species were included 
in this analysis as blood-meal origins, and 13,934 blood 
meals from 21/41 mosquito species met the criteria 
(Additional file 1: Table S1).

Shannonʼs diversity index was calculated for each mos-
quito species [27] and expressed as an h-index. A higher 
h-index is associated with a greater feeding diversity, as 
it suggests a mosquito species has fed on a greater num-
ber of vertebrate species and/or feeds evenly across ver-
tebrates. Conversely, a lower h-index suggests mosquito 
species have a low feeding diversity, and are associated 
with feeding on fewer vertebrate species and/or a greater 
number of feeds on a small number of vertebrates. 
Within this dataset, we categorised an h-index in the top 
quartile as ‘high feeding diversity’, whilst an h-index in 
the lowest quartile was considered a ‘low feeding diver-
sity’. Shannon’s diversity index was calculated in Excel.

Results
Characteristics of the selected studies
We identified ten papers that met the search criteria, 
comprising 14,044 mosquito blood meals across 48 mos-
quito species. Study characteristics and methodologies 
are summarised in Table  1. These studies took place at 
32 sites across 14 bioregions, in all mainland states and 
territories in Australia (Fig. 1). The selected studies were 
undertaken over a 62 year-period, from 1954 to 2016.

To collect blood-fed mosquitoes, most studies (n = 
8) used Centers for Disease Control (CDC) CO2-baited 
miniature light traps [28], supplemented with 1-octen-
3-ol in some cases (Table  1). Other methods included 
unbaited BioGent® (BG) sentinel traps [22] and aspira-
tion of resting sites [21, 29, 30]. One study [29] also used 
vehicle-mounted traps. To analyse blood meals, early 
studies employed precipitin tests [29–31] and serological 
gel diffusion techniques [32, 33] (Table  1). More recent 
studies adopted enzyme-linked immunosorbent assay 
(ELISA) and various molecular techniques including pol-
ymerase chain reaction (PCR) and gene sequencing [22–
24, 34]. Vertebrate reference sources most commonly 
employed in immunoassays and gel diffusion techniques 
were commercially-available anti-sera and included 
horse, rabbit, rat, dog, chicken, cat, bird, kangaroo, cow 
and pig. Molecular studies which included wildlife used 
vertebrate references provided through wildlife hospi-
tals, zoos and roadkill. These studies also included DNA 
sequence data available on GenBank.

Mosquito‑vertebrate associations
Of the 10 studies of blood meal origins, data on 41 mos-
quito species were reported, and data on 12 of these met 
the criteria to be included in analysis: Aedes norman-
ensis, Ae. notoscriptus, Ae. procax, Ae. vigilax, Anoph-
eles annulipies, An. bancroftii, Coquillettidia linealis, 
Cq. xanthogaster, Culex annulirostris, Cx. sitiens, Cx. 
quinquefasciatus and Mansonia uniformis (Fig.  2). All 
species, except Ae. procax, showed significant positive 
associations with at least one vertebrate host. The strong-
est positive log odds ratio was between Cx. annulirostris 
and the Diprotodontia taxa (possums and kangaroos; log 
odds ratio (LOR) = 2.77), followed by Ma. uniformis and 
humans (LOR = 2.2). All mosquito species except Ae. 
vigilax and Cq. xanthogaster had strong negative asso-
ciation with at least one vertebrate taxon. The strongest 
negative log odds ratio was between Cx. quinquefasciatus 
and Diprotodontia (LOR = -3.8), followed by Ae. noto-
scriptus and Artiodactyla (cows, sheep, pigs and goats; 
LOR = -2.8).

The mosquito species clustered together in two broad 
groups. The first cluster group consisted of seven mos-
quito species (Cx. quinquefasciatus, Ae. vigilax, Cq. xan-
thogaster, Ae. procax, Cq. linealis, Cx. sitiens and Ae. 
notoscriptus), of which most shared a negative associa-
tion with the Artiodactyla (6 of the 7 species) and Dipro-
todontia vertebrates (5/7), and a positive association with 
humans (7/7) and Aves (6/7). Within this cluster, Ae. 
vigilax and Cq. xanthogaster were in the same clade and 
shared a strong positive association with Perissodactyla. 
Coquillettidia linealis and Cx. sitiens also shared a clade 
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and strong negative association with both Artiodactyla 
and Carnivora.

The second major cluster group consisted of five mos-
quito species (Cx. annulirostris, Ae. normanesis, An. 
annulipies, An. bancroftii and Ma. uniformis). These spe-
cies all shared a positive association with Artiodactyla 
and a negative association with Aves. Culex annulirostris 
and Ae. normanesis were on the same clade and shared 
a strong positive association with Perissodactyla and 
Diprotodontia. Although they both also had a negative 
association with Aves, Carnivora and humans, this was 
strongest only for Ae. normanensis. Anopheles annulipies 
and Ma. uniformis were on a single clade and were both 
had high associations with humans.

Mosquito feeding diversity
Twenty-two mosquito species met the criteria for inclu-
sion in the diversity analysis based on Shannonʼs index 
(Fig.  3), comprising 12,424 individual blood meals in 
total. The median h-index reported across all species 
was 1.40, and the mean was 1.34. Low feeding diver-
sity (h-index = < 0.99) was observed in five mosquito 
species; of which Ae. aegypti had the lowest diveristy 
(h-index = 0.72). High feeding diversity (h-index = > 1.64) 

was reported in five mosquito species; of these, Ae. vigi-
lax had the highest diversity (h-index = 2.17).

Discussion
Our analysis revealed that each mosquito species had a 
unique feeding association with different vertebrates, 
suggesting species-specific feeding patterns. The hierar-
chical clustering from the odds ratio analysis sorted mos-
quitoes into two broad groups: mosquitoes that either 
had a positive association with birds (Aves) and negative 
association with livestock (Artiodactyla), or vice-versa. 
Interpreting the feeding patterns of these particular mos-
quito species is important, given that at least half of these 
mosquitoes have been found to be competent vectors for 
notifiable arboviruses in Australia [35–40], whilst the 
other half have been demonstrated to carry some viruses, 
although their ability to transmit them has not been fully 
investigated [41–43].

Intrinsic drivers of mosquito host choices (such as 
genetics, larval ecology and dispersal) did not explain 
feeding patterns in this analysis. Specifically, mosquito 
species did not group together by taxonomic related-
ness (e.g. genus). Studies examining the effect of genet-
ics on mosquito host choices have found that offspring 

Fig. 1  Bioregions in which blood meal studies took place (indicated in red) across Australia (derived from Google Map Data ©)
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Fig. 2  Feeding associations between Australian mosquito species and vertebrate taxa. Log odds ratio for mosquito species (right hand side) 
indicate feeding likelihood on vertebrate taxa (bottom). Mosquito species are sorted in the chart using a hierarchal cluster (left) according to how 
similar their vertebrate feeding patterns are

Fig. 3  Shannon’s diversity (h-index) of blood meal origins for Australian mosquitoes, error bars represent the standard error for all measures
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are more likely to feed on the same host as previous 
generations [5, 6]. However, this has only been demon-
strated within-species and is unlikely to be important 
between species belonging to same genus, particularly 
since potential for rapid evolution (due to short genera-
tion span) likely reduces the influence that taxonomic 
relatedness may have on mosquito feeding host behav-
iour. Another intrinsic factor, mosquito larval ecology, 
may partially explain some clustering. For example, Ae. 
normanensis and Cx. annulirostris grouped together and 
larvae of both typically inhabit inland freshwater; simi-
larly, the larval habitat of both An. bancroftii and Ma. 
uniformis is freshwater swamps. Although this pattern 
did not explain all clusters, it implies that local environ-
mental influences, at least partially, drive mosquito host 
choice. This is perhaps not surprising when considering 
potential limitations on dispersal from larval habitats for 
various mosquito species. For example, Ae. vigilax is rec-
ognised as having large dispersal capability, being found 
more than 50 km from potential saltwater larval habitats, 
albeit likely wind-assisted in some cases [44]. This high 
dispersal potential suggests that Ae. vigilax can move 
readily between locations, allowing feeding on a diversity 
of vertebrate taxa, as reflected in our feeding diversity 
analysis. As such, whilst genetics and larval habitats may 
be important within species on a local scale, they do not 
explain the aggregated feeding patterns observed across 
Australia.

Extrinsic variables, such as species abundance and 
diversity, explain in part some of the feeding associa-
tions in this analysis, but not all. Mosquitoes have com-
plex interactions with their environment. Thus, factors 
broader than vertebrate abundance alone are important 
to consider for mosquito feeding patterns. For example, 
mosquito flying/resting height has been linked to host 
feeding patterns [45–48]. In two Australian studies, more 
Cx. sitiens and Cx. quiquefasciatus were caught in traps 
set at least 8 m off the ground, whilst a higher abundance 
of Ae. vigilax were found in traps 1.5 m off the ground, 
for the same locations [47, 48]. In our meta-analysis, Cx. 
sitiens and Cx. quinquefasciatus had strong positive asso-
ciations with blood meals originating from tree dwelling 
bird species (i.e. Australasian figbirds Sphecotheres vieil-
loti, common myna Sturnus tristis and helmeted friar-
birds Philemon buceroides [22]), whilst Ae. vigilax had the 
strongest positive associations with ground-dwelling spe-
cies (horses and humans). This could suggest that whilst 
overall vertebrate abundance within a given environment 
can influence the availability of a particular host, mosqui-
toes are highly mobile and may seek a blood meal across 
ecological niches within a given habitat. Thus, different 
mosquito species can exhibit different feeding patterns 

despite being exposed to the same vertebrates in a single 
location.

In the odds ratio analysis, Cx. annulirostris exhibited 
an unexpected feeding pattern. This species is consid-
ered an important vector for medically-important arbo-
viruses [36, 49, 50]; however, the meta-analyses which 
included more than 5700 blood meals, found that Cx. 
annulirostris had only a weak feeding association with 
humans (LOR = -0.74). This is consistent with an early 
field study assessing mosquito feeding preferences using 
live baits, in which Cx. annulirostris preferred cows, pigs 
and dogs more than humans [37]. The analysis based on 
Shannonʼs diversity, along with other studies, have iden-
tified Cx. annulirostris as a generalist feeder with plastic 
feeding patterns that may shift temporally or spatially 
[51, 52]. This knowledge, in combination with the wide-
spread distribution of Cx. annulirostris across Australia, 
suggests that localised studies of Cx annulirostris feeding 
are required to assess the role the species plays in disease 
transmission for which it is theoretically an important 
vector.

In addition to Cx. annulirostris, Aedes vigilax and Ae. 
notoscriptus were identified as generalists due to their 
high diversity scores in the Shannon’s diversity analy-
sis. International studies [53–55] suggest that generalist 
feeders are capable of playing a role as bridge vectors due 
to their ability to acquire pathogens from animal hosts, 
and subsequently transmitting the pathogen to humans. 
Bridge vectors are particularly important for enzootic 
amplification of arboviruses and are often associated with 
outbreaks [53]. For the species identified in this analy-
sis as generalists, they have been demonstrated to be 
competent vectors of zoonotic arboviruses in Australia 
[45, 56–58], and as such should be closely monitored to 
reduce transmission between vectors and humans.

The disease ecology associated with specialist feeders is 
also important to consider. Here we identified Ae. aegypti 
as having the lowest feeding diversity, indicating the spe-
cies is a specialist feeder. Indeed, more than 70% of the 
blood meals originated from humans. The anthropophilic 
feeding observed in Ae. aegypti is similar to that reported 
in international studies, where 80–99% of all blood meals 
are human in origin [59, 60]. This feeding pattern for Ae. 
aegypti is consistent with its role as an important vector 
of several arboviruses which are transmitted between 
humans without an animal reservoir, including dengue, 
Zika and chikungunya viruses. Interestingly, although the 
importance of Ae. aegypti is recognised, under laboratory 
conditions the species has been observed to demonstrate 
relatively poor transmission rates for DENV, when com-
pared to other mosquito species [61, 62]. In this case, 
being a specialist feeder, preferring mainly humans, is 
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what determines the status of Ae. aegypti as an important 
disease vector, rather than its competence [63].

Future directions
An absence of data on host availability in the regions 
where mosquitoes were collected limits inferences on 
host preference specifically. Of the blood meal studies 
reviewed here, only one considered host abundance [21]. 
That study assessed abundance through a local resident 
survey on the number of pets, people and estimated 
number of possums in the vicinity, adding confidence to 
the interpretation of vector-feeding patterns. Such col-
lection of host ecology data in conjunction with blood-
fed mosquitoes can be considerably labour-intensive; 
however, it provides a more thorough assessment of how 
host abundance and biomass may influence observed 
mosquito feeding patterns and informs the selection of 
appropriate reference samples against which to com-
pare blood meals in the laboratory. Although limited in 
their application, other blood-meal studies [64, 65] have 
utilised databases, such as the Atlas of Living Australia 
(ALA) or the Global Biodiversity Information Facility 
(GBIF), to identify potential available vertebrates in the 
absence of formal vertebrate surveys. Whilst they are no 
substitute for vertebrate surveys, these datasets could be 
beneficial for noting the presence of common hosts in 
future blood meal studies but are limited in estimating 
host density or true absence of a given species.

Although a range of reference vertebrates were often 
included in Australian blood-meal studies, they were 
rarely a true representation of the vertebrates available to 
mosquitoes for feeding. At present there are large gaps in 
understanding the role of cryptic, migratory or smaller 
mammalian species in mosquito feeding patterns. For 
example, only two studies included rabbits [22, 24] and 
rodents [22, 23] in their analysis. Despite their small 
size, rabbits and rodents were identified to be the origin 
of blood meals for Cx. sitiens and Cq. linealis [22]. Mos-
quito-rodent associations have also been identified in the 
literature, where by at least 27% of mice were seropositive 
to RRV [58, 66]. It is therefore important that, despite 
small body size, rats and rodents are included in future 
investigations of mosquito blood meals.

Conclusions
Improved understanding of mosquito feeding patterns 
can lead to better management and risk predictions for 
medically important arboviruses. Here we find that of the 
Australian mosquito species tested, each had a unique 
feeding pattern; however, the particular specialist or gen-
eralist feeding patterns of mosquito species could be a 
key determinant of the risk they pose for human disease. 
These patterns, and the resulting human disease risk, are 

likely influenced by a suite of intrinsic and extrinsic vari-
ables. Broader ecological considerations alongside these 
feeding patterns could be useful for the interpretation of 
these complex biological systems, but at present data avail-
able to do this are limited. Future studies should utilise 
multidisciplinary approaches to collect data on vertebrate 
communities in parallel with mosquito communities. More 
data from both top-down (broad assessments of blood 
meals) and bottom-up approaches (specialised host choice 
experiments) are needed in conjunction with modelling 
techniques to bring these data together for meaningful 
interpretation of arbovirus transmission risk in Australia.
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