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Abstract

arthropod and vertebrate.

Background: A wide range of molecules are used by tapeworm metacestodes to establish successful infection
in the hostile environment of the host. Reports indicating the proteins in the cestode-host interactions are
limited predominantly to taeniids, with no previous data available for non-taeniid species. A non-taeniid,
Hymenolepis diminuta, represents one of the most important model species in cestode biology and exhibits
an exceptional developmental plasticity in its life-cycle, which involves two phylogenetically distant hosts,

Results: We identified H. diminuta cysticercoid proteins that were recognized by sera of H. diminuta-infected rats using
two-dimensional gel electrophoresis (2DE), 2D-immunoblotting, and LC-MS/MS mass spectrometry. Proteomic analysis of
42 antigenic spots revealed 70 proteins. The largest number belonged to structural proteins and to the heat-shock
protein (HSP) family. These results show a number of the antigenic proteins of the cysticercoid stage, which were present
already in the insect host prior to contact with the mammal host. These are the first parasite antigens that the mammal
host encounters after the infection, therefore they may represent some of the molecules important in host-parasite
interactions at the early stage of infection.

Conclusions: These results could help in understanding how H. diminuta and other cestodes adapt to their diverse and
complex parasitic life-cycles and show universal molecules used among diverse groups of cestodes to escape the host

response to infection.
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Background

Diseases caused by tapeworms are widespread globally,
may influence human and animal health, and have a
strong economic impact. In South America, Asia, and
sub-Saharan Africa, human infections with Echinococcus
spp. are common [1], whereas infections by Taenia spp.,
Diphyllobothrium latum and some of the other cestode
species that infect humans are endemic in other regions
of world as well [2, 3]. In addition to these highly patho-
genic species, there are also cases of human infection
with low-pathogenic tapeworms such as Hymenolepis
diminuta. Human H. diminuta hymenolepiasis is a
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globally widespread zoonotic infection known to be
endemic in Asia, southern and eastern Europe, Central
and South America, and Africa [4]. Typically, H. dimin-
uta parasitizes the small intestine of rodents (mostly
mice and rats) but occasionally it infects humans [5, 6].
Most of the reported cases have been documented from
children [7-9]. Intermediate hosts for this parasite are
beetles, Tribolium spp. and Tenebrio spp. [6], in which
the cysticercoid stage develops. The cysticercoid, as an
invasive stage of the tapeworm, enters the rat or human
body through the consumption of infected insects, either
directly or via contaminated water or food. When it
reaches small intestine, it undergoes maturation into the
adult stage. As either rat or human may serve as a
definitive host for H. diminuta, this species represents
an interesting model in studies focused on the mecha-
nisms of infection.
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Better understanding of a parasite’s adaptations to its
way of life and the complexity of interactions between
the parasite and the host is possible by introduction of
modern techniques of proteomic and genomic research
[10-13]. Proteomic studies of helminths have shown
new aspects in the parasite-host interrelations involving
selected species of tapeworms Echinococcus granulosus
[14-19] Echinococcus multilocularis [20, 21] and Taenia
solium (22, 23].

To the best of our knowledge, proteomic studies of
cestodes have been conducted exclusively on species de-
veloping in mammal host tissues (rats, sheep, humans)
under the influence of the host immune system during
the period of their differentiation from the hexacanth to
metacestode. Metacestodes developing in mammalian
hosts (e.g. the taeniids mentioned above) evolved
immune-evading strategies when exposed to the pres-
ence of host molecules in all of their life-cycle stages,
both in the intermediate and definitive host. It is
unknown whether similar mechanisms are also present
in those cestode species that have invertebrates in their
life-cycle. Hymenolepis diminuta seems to be a perfect
model to explore whether a tapeworm needs to cope
with an invertebrate intermediate and the mammalian
definitive hosts in different ways [6, 24, 25]. This will help
in understanding how H. diminuta and other cestodes
adapt to their diverse and complex parasitic life-cycles.

In this study, we identified H. diminuta cysticercoid
proteins that were recognized by the sera of H. diminuta-
infected rats. These results show a number of the anti-
genic proteins of the cysticercoid stage, which were
present already in the invertebrate host, without the influ-
ence of the mammal host. This study reports on the po-
tential parasite somatic antigens that are encountered by
the mammalian host upon infection.

Methods

Collection of Hymenolepis diminuta cysticercoids
Cysticercoids of H. diminuta were isolated from dis-
sected intermediate hosts, Tenebrio molitor beetles,
6 weeks after infection, under a dissecting microscope.
Cysticercoids were washed 5 times with 100 mM PBS
(phosphate buffered saline) to remove debris. Before
protein extraction and proteomic analysis cysticercoids
were stored at -80 °C.

Isolation of proteins

After thawing, H. diminuta cysticercoids were again
extensively washed three times in PBS (100 mM) and
then mixed with lysis buffer (8 M Urea, 4% CHAPS,
40 mM Tris-base, supplemented with protease inhibitor
cocktail; Roche, Berlin, Germany) to solubilize protein
components. Then the protein mixture was homogenized
in a glass Potter-homogenizer and disintegrated by

Page 2 of 12

sonication. The lysis solution was clarified by centrifuga-
tion at 14,000x rpm for 15 min in an Eppendorf micro-
centrifuge. Concentration of proteins was measured using
the Spectrometer ND-1000 UV/Vis (NanoDrop Tech-
nologies, Wilmington, USA). Proteins were kept at -80 °C
for further analysis.

Two-dimensional gel electrophoresis (2DE) and 2DE-
immunoblotting

To optimize the conditions for 2DE separation, the first-
dimension protein separation was first conducted in the
pH range of 3-10 using IPG strips (Bio-Rad, Hercules,
USA). We observed that cysticercoid proteins were
located in pH 4-7 (results not shown), therefore further
separations were performed using IPG strips with pH 4—
7 (Bio-Rad, Hercules, USA). The mixture of proteins
(approximately 150 pg) were rehydrated overnight in
250 pl of rehydration solution (ReadyPrep™ 2-D Rehy-
dration Buffer, BioRad) and loaded onto a pH 3-10 and
pH 4-7 IPG strip for the first-dimension separation. Iso-
electric focusing (IEF) was performed using a Protean
IEF Cell (Bio-Rad) at 20 °C as follows: 15 min at 250 V,
then rapid ramping to 4000 V for 2 h, and 4000 V for
16,000 Vh (using a limit of 50 pA/strip). After IEF, the
strips were first equilibrated for 25 min in equilibration
buffer (ReadyPrep™ 2-D Starter Kit Equilibration Buffer
I, Bio-Rad), followed by a 25 min equilibration in the
same buffer supplemented with 2.5% iodoacetamide
(ReadyPrep™ 2-D Starter Kit Equilibration Buffer II). The
second dimension, SDS-PAGE, was run on 12% poly-
acrylamide gel in the Midi-Protean Tera Cell (Bio-Rad,
USA) with 200 V, for approximately 45 min. All gels
were run in the same conditions.

Sera samples were collected four weeks after infection
from male Lewis rats, infected with H. diminuta at age
of about 3 months. Sera samples taken before the infec-
tion at day 0 were used as a negative control.

After 2DE, the gels were silver-stained using the Silver
Staining Kit according to the manufacturer’s protocol
(Krzysztof Kucharczyk Techniki Elektroforetyczne, Warsaw,
Poland) or used without staining for 2DE immunoblotting.
Further analyses were done using repetitive silver stained
gels (> 90% of coverage). Gels were scanned with a GS-800
densitometer (Bio-Rad) and analyzed using Quantity One
and PDQuest Analysis Software (Bio-Rad).

For immunoblotting, proteins were transferred by a
wet transfer system (Bio-Rad) to a nitrocellulose mem-
brane (Bio-Rad) that was then treated with antisera
diluted 1:500 (from experimentally H. diminuta-infected
rats) and then with anti-rat IgG-conjugated to horserad-
ish peroxidase (1:8000, Sigma-Aldrich, Louis, USA). The
blots were developed using the SuperSignal West Pico
Chemiluminescent Substrate (ThermoFisher Scientific,
Waltham, USA) according to the manual, and visualized
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using GS-800 Densitometer (Bio-Rad) combined with 1-
D Analysis Software Quantity 1 (Bio-Rad). The experi-
ment was performed using four biological replicate
samples. The imaging of the membrane revealed anti-
genic spots, of which 42 were selected for mass spec-
trometry identification.

LC-MS/MS identification and bioinformatics

Spots excised manually from the silver-stained gels were
subjected to standard ‘in-gel digestion’ procedure, in
which they were first dried with acetonitrile (ACN) and
then subjected to reduction, alkylation, and trypsin
digestion (for details see Kordan et al. [26]). Briefly,
reduction was done with 10 mM DTT in 100 mM
NH4HCO; for 30 min at 57 °C. Cysteines were then
alkylated with 0.5 M iodoacetamide in 100 mM
NH,HCO3 (45 min in dark at room temperature) and
proteins were digested overnight with 10 ng/pl trypsin
in 25 mM NH4HCO;3;, pH 8.5 (Promega, Madison, WI,
USA) at 37 °C. Resulting peptides were extracted in a
solution containing 0.1% formic acid and 2% ACN (for
details see Kordan et al. [26]).

The tryptic peptides were subjected to liquid chroma-
tography and tandem mass spectrometry (LC-MS/MS)
in the Laboratory of Mass Spectrometry, Institute of
Biochemistry and Biophysics, Polish Academy of Sci-
ences (Warsaw, Poland). Samples were concentrated and
desalted on a RP-C18 pre-column (Waters, Milford,
USA), and further peptide separation was achieved on a
nano-ultra performance liquid chromatography (UPLC)
RP-C18 column (Waters, BEH130 C18 column, 75 pum
id., 250 mm long) of a nanoACQUITY UPLC system,
using a 45-min linear acetonitrile gradient. Column out-
let was directly coupled to the Electrospray ionization
(ESI) ion source of the Orbitrap Velos type mass spec-
trometer (Thermo Scientific, Waltham, USA), working
in the regime of data dependent MS to MS/MS switch
with HCD type peptide fragmentation. An electrospray
voltage of 1.5 kV was used. Raw data files were pre-
processed with Mascot Distiller software (version 2.5,
MatrixScience). The obtained peptide masses and
fragmentation spectra were matched with the National
Center for Biotechnology Information (NCBI) non-
redundant database NCBInr 20160525 (88,005,140
sequences; 32,294,985,422 residues), with a Cestoda filter
using the Mascot search engine (Mascot Server v. 2.4.1,
MatrixScience). The following search parameters were
applied: enzyme specificity was set to trypsin, peptide
mass tolerance to + 20 ppm, and fragment mass
tolerance to + 0.1 Da. The search criteria for the
Mascot searches were trypsin digestion with one
missed cleavage allowed, carbamidomethyl modifica-
tion of cysteine as a fixed modification, and oxidation
of methionine as a variable modification.
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Multidimensional protein Identification Technology -
type (MudPIT-type) and/or the highest number of
peptide sequences, were selected. The expected value
threshold of 0.05 was used for analysis, which means
that all peptide identifications had a less than 1 in 20
chance of being a random match. Spectra derived from
silver-stained gel pieces usually do not contain enough
MS/MS fragmentations to calculate a meaningful FDR,
therefore a Mascot score threshold of 30 or above (de-
pending on the value given by Mascot) was used. Classi-
fication of the identified proteins was based on Gene
Ontology molecular function, biological process, and
cellular component information available from the Uni-
ProtKB database (http://www.uniprot.org/) and QuickGO
(http://www.ebi.ac.uk/QuickGO/).

We used SignalP 4.1 server to predict the presence
and location of signal peptide cleavage sites in amino
acid sequences in identified proteins of H. diminuta.
The method incorporates a prediction of cleavage sites
and a signal peptide/non-signal peptide prediction based
on a combination of several artificial neural networks as
described by Nielsen [27].

Results
2DE (two-dimensional gel electophoresis) analysis of
cysticercoid proteins of H. diminuta
We detected more than 540 protein spots in the prote-
ome of the H. diminuta cysticercoids, with a pH range
of 4-7 and Mw (molecular weight) of 10-250 kDa. Fig-
ure 1 represents one of the four replicate silver-stained
proteome gels used in further analyses.
2DE-immunoblot (two-dimensional immunoblotting)
revealed that 42 spots were positively recognized by
the H. diminuta-infected rat sera (Fig. 2). All of these
spots were successfully identified using LC-MS/MS.
As shown in Fig. 2, potentially immunogenic proteins mi-
grated predominantly with a Mw between 55 and
250 kDa. However, a limited number of spots containing
antigenic proteins were also observed in the area be-
tween 25 and 55 kDa. The proteins were organized in
six groups of horizontally adjacent immunorective
spots. The first group includes spots labelled 2 to 9
in Fig. 2. The second group of spots is from 10 to
15. Spots 16—20 belong to the third group, whereas
25-28 belong to the fourth. Spots 32 and 33 the fifth
group, and 34 to 36 is the sixth.

LC-MS/MS identification of cysticercoid antigenic proteins
H. diminuta

The 42 protein spots were subjected to in-gel tryptic
digestion and an equal amount of peptides was subjected
to LC-MS/MS analysis. We identified 70 potentially anti-
genic proteins (Table 1). As no whole-genome/proteome
database is yet available for H. diminuta, protein
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Fig. 1 Silver-stained 2-DE protein maps of Hymenolepis diminuta cysticercoid protein spots. Cysticercoid proteins were separated on a linear pH
range of 4-7 by using IEF in the first dimension and 12% SDS-PAGE in the second dimension. Antigenic protein spots are indicated by red colour

identification in the present study was conducted against
protein sequences available for other cestode species.
Several proteins were identified from multiple spots
(Additional file 1: Table S1) with differing pI and MW
values, suggesting that the proteins in question have
undergone post-translational modification (proteolysis
or charged modification). Most of the analyzed spots
contained more than one protein, e.g. a relatively high
number of proteins were identified from spots number
30 and 32 (10 proteins), 35 (11 proteins), 38 (17 pro-
teins), 39 (16 proteins) and 41 (13 proteins). However,
most spots taken into consideration contained less than

3-4 proteins. Proteins that appeared to be most
frequently identified from multiple spots are: actin
cytoplasmic 2 (14 spots), hypothetical transcript (12
spots), procollagen-lysine 2-oxoglutarate 5-dioxygenase
(8 spots), and type II collagen B (16 spots) (Table 1). We
also noticed the presence of individual proteins identi-
fied only in selected spots (Table 1). Most identified
proteins are structural and heat-shock family proteins,
and selected potentially antigenic proteins are enzymes
e.g. belonging to the cysteine proteases family (Table 1,
Additional file 1: Table S1). The highly cross-reactive
protein spots matched type II collagen B, hypothetical
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Fig. 2 Recognition pattern of H. diminuta cysticercoid antigens by antibodies of H. diminuta-infected rats. The nitrocellulose membrane shows cysticercoid
immunogenic protein spots visualized using SuperSignal West Pico Chemiluminescent Substrate (ThermoFisher Scientific, USA) combined with Quantity
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Table 1 Alphabetical list of identified cysticercoid antigenic proteins with spot numbers and recognition of potentially signaling/

secretory protei ns

Protein name Spot number (Number of spots) Signal
protein®
26S protease regulatory subunit 6A (Echinococcus granulosus) 38,39 (2) NO
26S protease regulatory subunit 7 (Echinococcus granulosus) 38 (1) NO
78 kDa glucose-regulated protein 32,38 (2) YES
Actin, cytoplasmic 2 (Echinococcus granulosus) 8,10, 11, 20, 24, 27, 29, 30, 31, 35, 38, 39, 40, 41 (14) NO
Actin, partial (Diphyllobothrium dendriticum) 2,11,37,42 (4) NO
Actin-1 40,41 (2) NO
Actin-2 10, 39, 40, 41 (4) NO
Actin-5 40,41 (2) NO
Actin-6 2,10, 26,31 (4) NO
Annexin A7 (Echinococcus granulosus) 42 (1) NO
Apolipoprotein A | binding protein (Hymenolepis microstoma) 36 (1) NO
ATP dependent RNA helicase Ddx1 (Hymenolepis microstoma) 22 (1) NO
ATP dependent RNA helicase DDX31 (Hymenolepis microstoma) 38,41 (2) NO
Beta tubulin (Hymenolepis microstoma) 37,38,41,37 (4) NO
Beta-tubulin isoform 2, partial (Echinococcus granulosus) 37 (1) NO
Calpain A (Hymenolepis microstoma) 30, 34, 35, 36, 37 (5) NO
Chaperonin containing TCP1 subunit 2 (beta) (Hymenolepis microstoma) 39 (1) NO
Chaperonin containing TCP1 subunit 5 (epsilon) (Hymenolepis microstoma) 39 (1) NO
Collagen alpha 1(V) chain (Hymenolepis microstoma) 9,17,15 (3) NO
Collagen alpha 2(l) chain (Hymenolepis microstoma) 15 (1) YES
Collagen alpha-1(XXVIl) chain (Echinococcus granulosus) 1,6,7, 23 (4) YES
Collagen type i ii iii v xi alpha (Echinococcus granulosus) 10, 12, 13, 15 (4) NO
Dihydrolipoyllysine residue succinyltransferase (Hymenolepis microstoma) 38 (1) NO
Dihydropyrimidinase 2 (Hymenolepis microstoma) 35 (1) NO
Elongation factor 1-a, partial (Hymenolepis diminuta) 38 (1) NO
Filamin (Hymenolepis microstoma) 30, 32, 33, 39, 39 (5) NO
Glucose regulated protein GRP78 (Spirometra erinaceieuropaei) 32,33,42(3) YES
Gynecophoral canal protein (Hymenolepis microstoma) 26,27 (2) YES
Heat shock 70 kDa protein, partial (Mesocestoides corti) 29, 30, 38, 41 (4) NO
Heat shock cognate 70 kDa protein 42 (1) NO
Heat shock cognate protein (Echinococcus granulosus) 41 (1) NO
Heat shock protein 60 (Echinococcus multilocularis) 34 (1) NO
Heat shock protein 70 (Hymenolepis microstoma) 29,30 (2) NO
Heat Shock protein family member (hsp 3) (Hymenolepis microstoma) 32, 33(2) YES
Hypothetical transcript (Hymenolepis microstoma) 3,4, 5,30, 31, 34, 35, 38, 39, 40, 41, 42 (12) NO
Lamin dmO (Hymenolepis microstoma) 38 (1) NO
Lysosomal alpha glucosidase (Hymenolepis microstoma) 25 (M) YES
Major egg antigen (p40) (Hymenolepis microstoma) 39 (1) NO
Mitochondrial ATP synthase (Spirometra erinaceieuropaei) 41 (1) NO
Mitochondrial processing peptidase beta subunit (Hymenolepis microstoma) 38 (1) NO
Myosin heavy chain (Hymenolepis microstoma) 12, 32, 33, 34, 35 (5) NO
Myosin heavy chain non muscle (Hymenolepis microstoma) 14,32, 33, 34 (4) NO
Myosin heavy chain, striated muscle (Echinococcus granulosus) 12,32,35(3) NO
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Table 1 Alphabetical list of identified cysticercoid antigenic proteins with spot numbers and recognition of potentially signaling/

secretory proteins (Continued)

Protein name Spot number (Number of spots) Signal
protein®
Myosin-11 (Echinococcus granulosus) 32,33,34,35 (4) NO
NADP dependent malic enzyme (Hymenolepis microstoma) 38 (1) NO
Nuclear pore complex protein Nup205 (Hymenolepis microstoma) 29 (1) NO
Paramyosin (Hymenolepis microstoma) 32(M NO
Phosphoenolpyruvate carboxykinase (Hymenolepis microstoma) 29,30, 36 (3) NO
Procollagen lysine 2-oxoglutarate 5-dioxygenase (Hymenolepis microstoma) 24,25, 26, 27, 28, 29, 30, 31 (8) YES
Putative cyclin-H (Echinococcus granulosus) 42 (1) NO
Putative HSP20 related protein (Echinococcus multilocularis) 39 (1) NO
Radixin (Hymenolepis microstoma) 36 (1) NO
Retinoblastoma binding protein 4 (Hymenolepis microstoma) 37 (1) NO
Small heat-shock protein (Taenia solium) 39 (1) NO
Spectrin alpha actinin (Hymenolepis microstoma) 34,35 (2) NO
Spectrin alpha chain (Echinococcus granulosus) 32, 33,41 (3) NO
Spectrin beta chain (Hymenolepis microstoma) 27 (1) NO
Stomatin protein 2 (Hymenolepis microstoma) 39 (1) NO
Stress-70 protein (Echinococcus granulosus) 29,30 (2) NO
Succinate coenzyme A ligase, GDP forming, beta subunit (Hymenolepis microstoma) 38 (1) NO
Succinyl-CoA ligase (GDP-forming) subunit beta (Echinococcus granulosus) 38 (1) NO
Talin-1 (Echinococcus granulosus) 36 (1) NO
Transforming growth factor-beta-induced protein ig-h3 (Echinococcus granulosus) 25, 26,27 (3) YES
Tubulin (Spirometra erinaceieuropaei) 35 (1) NO
Tubulin alpha-1C chain (Echinococcus granulosus) 34, 35 (2) NO
Tubulin beta 1 chain (Hymenolepis microstoma) 37,39, 40, 41 (4) NO
Tubulin beta 2C chain (Hymenolepis microstoma) 37,38,39 (3) NO
Tubulin beta-2 chain 38, 40, 42 (3) NO
Tubulin beta-3 chain 39 (1) NO
Type Il collagen B (Echinococcus multilocularis) 1,2,4,6,8,16,17,18,19, 20, 21, 22, 23, 24, 33,35 (16) NO

“The presence of secretory/signal proteins predicted with the use of SignalP 4.1 Server software; YES, potentially secretory protein; NO, negative search result

transcript and collagen alpha-1 (XXVII) chain, actin,
myosin heavy chain, procollagen-lysine 2-oxoglutarate 5-
dioxygenase, HSP3 family member, and tubulin alpha-
1C chain (Table 1, Additional file 1: Table S1). The
molecular weight of the aforementioned protein spots
ranged between 55 and 250 kDa. The spots 37-42
(Fig. 2) with MWs ranging from 25 to 55 kDa and pH
from 5 to 6, we found to contain 5 proteins, such as
tubulin beta-2C chain, HSP 70, small HSP, actin, and
major egg antigen.

Gene ontology (GO) of the potentially antigenic proteins
of H. diminuta cysticercoid

Antigenic proteins identified were grouped according to
molecular function (60 proteins), cellular component (41
proteins), and biological process (33 proteins) (Figs. 3, 4
and 5).

Eighteen subcategories were assigned to molecular
functions (Additional file 1: Table S2). Most of the
assigned molecular functions were associated with: small
molecule binding (GO:0036094; 40), organic cyclic com-
pound binding (GO:0097159; 39), carbohydrate derivative
binding (GO:0097367; 38), and heterocyclic compound
binding (GO:1901363; 39). Altogether 10 cysticercoid pro-
teins have unknown molecular functions.

Biological processes were associated with thirteen sub-
categories. A large number of potentially antigenic pro-
teins were related to primary metabolic processes
(GO:0044238; 12), organic substance metabolic processes
(GO:0071704; 13), cellular processes (GO:0009987; 24),
single-organism processes (GO:0044699; 16), and cellular
component organization or biogenesis (GO:0071840; 12).
Among 70 identified proteins, 37 had no established/
described biological process (Additional file 1: Table S2).
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Fig. 3 Identified cysticercoid antigenic proteins categorized by their molecular functions according to gene ontology (GO) information obtained
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Cellular components were classified into twelve sub-
categories (Additional file 1: Table S2). Most of the
proteins were classified to cell (GO:0005623; 35), cell
parts (GO:0044464; 35), and organelles (GO:0043226;
26). For 29 of the 70 cysticercoid proteins, we were
unable to establish an associated cellular component.

With the use of SignalP 4.1 server we were able to pre-
dict which of the identified H. diminuta proteins are
potentially secretory/signal molecules. We predicted the
presence of nine potentially secretory/signal proteins.
The results of this analysis are shown in Table 1.

Discussion

Altogether 70 potentially antigenic proteins were
identified in this study via a combination of classical
2DE and immunoblot techniques. Our results show
that among cysticercoid proteins of H. diminuta,
there are also proteins previously noticed as antigens
or proteins being involved in mechanisms of host
immune evasion and/or immune modulation in other

helminths such as: actin, calpain, HSP70 and HSP60,
major egg antigen, myosin, paramyosin [14, 19, 21,
28, 29]; however, we also pointed out some mole-
cules with roles in parasite-host crosstalk that have
never been considered in cestodes (e.g. procollagen,
collagens, RBBP). Recent data proved that adult H.
diminuta tapeworms effectively modulate the host
immune system [30-32]; however, nothing is known
about immunomodulatory and antigenic properties
of its metacestodes.

Since our study focuses on the somatic proteins of the
cysticercoid taken directly from the intermediate host,
future experiments will include experimental infection
of rats and proteome and secretome analysis of the
juvenile H. diminuta tapeworms taken directly form rat
intestines soon after establishment. This would provide
us with the whole view on the mechanisms involved
during the early infection.

Among the proteins identified by us, most are compo-
nents of the cytoskeleton or muscle system, including
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biological regulation; 3 //
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Fig. 4 Identified cysticercoid antigenic proteins categorized by their biological processes according to gene ontology (GO) information obtained
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Fig. 5 Identified cysticercoid antigenic proteins categorized by their cellular component category according to gene ontology (GO) information

proteinaceous extracellular
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extracellular matrices; however, we also noticed mole-
cules involved in metabolic processes, e.g. detoxification.
These categories include the majority of proteins already
described as modulators of the host-parasite relation-
ships in helminths, as those are preferentially ‘seen’ by
the host during infection. Several proteins classified as
structural or metabolic are known to play key roles dur-
ing the process of invasion [22]. Cytoskeleton proteins
were highly expressed in cysticercoids of H. diminuta.
The presence of actin, tubulin, myosin, and paramyosin
has been described in the metacestodes of E. granulosus
causing hydatid disease, and in adult tapeworms as exhi-
biting antigenic properties [14, 33]. Upregulation of
cytoskeleton proteins may be characteristic for the meta-
cestode juvenile worms [34]. Based on our data, we sug-
gest that the higher expression of cytoskeleton proteins
in juvenile worms may indicate their role in the active
motility of cestodes and in the morphological change
from metacestodes and pre-strobilated juveniles to
adults, especially in the formation of proglottids. It is
possible that upregulation in the expression of cytoskel-
etal proteins occurs as a consequence of intensive cell
proliferation during the differentiation of the H. dimin-
uta cysticercoid into the adult parasite and as a response
to host immunity. The increased expression levels and
the rapid growth of the parasite may expose cytoskeletal
proteins to the host immune system and therefore
structural proteins of H. diminuta were found to be im-
munogenic [35]. The same could be true for alpha- and
beta-tubulins, which are components of microtubules
involved in cell division, motility, and polarity. Beta-
tubulin is also a target for commonly used benzimid-
azole anthelmintics [36]. Simultaneous presence of both
structural and stress-related proteins in H. diminuta
may be associated with complex and constant influence
of the host immune system and damage repair. The
balanced interplay between structural and stress

molecules is probably one of the survival factors adapted
by parasites during coevolution with their hosts. Damage
repair might explain the high number of structural and
stress-related proteins observed in cestode immature
stages, including cysticercoids of H. diminuta.

Paramyosin is one of the interesting proteins identified
in cysticercoids of H. diminuta. It is very immunogenic
and has been proposed to protect invading helminths
from immune attack by ‘decoy’ binding proteins of the
complement pathway [22]. Paramyosin was identified at
the helminths’ surface or in their secretome, and is
believed to represent multifunctional modulators of the
host immune response [15].

Cytoskeletal and heat-shock proteins (HSPs) were
identified as immunodominant among the identified
antigens in protoscoleces of E. multilocularis [21].
Immunoblotting has demonstrated that cytoskeletal
and HSP proteins are also present in the secretome
of adult H. diminuta [35]. Indeed, our results show
that in H. diminuta cysticercoids, heat-shock proteins
(HSP60, HSP70, HSP20, HSP3, sHSP) are represented
as one of the dominant protein families. The HSP
family has been previously studied as a potential
vaccine candidate [37] similar to calpain, another
important protein considered as a vaccine candidate
[33, 38], which was also present in several immunore-
active spots of H. diminuta cysticercoids.

In Schistosoma japonicum, HSP70 was shown to induce
an early humoral immune response and may be a good tar-
get for immunodiagnosis [39], whereas in adult Trichinella
spiralis HSP70 underscores its potential as a vaccine candi-
date [40]. As HSP70 is believed to play an important role in
infection, its presence in the H. diminuta cysticercoid stage
may be associated with immunomodulatory activity result-
ing in successful invasion and survival. Another protein be-
longing to the HSP family, which was identified from one
of the immunoreactive spots of H. diminuta cysticercoids,
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is HSP60. The most recent study on S. japonicum [41]
identified egg-derived HSP60 as a major parasite contribu-
tor of regulatory T-cell (Treg) induction among egg anti-
gens [42]. Ben Nouir et al. [43] used monoclonal IgM
antibody specific for Strongyloides ratti HSP60 and revealed
that vaccination with HSP60 conferred protection to
infection in a murine model. In relation to our results, the
presence of HSP60 among identified proteins may suggest
that H. diminuta promotes molecular mechanisms that
induce Treg cells.

Small-HSPs (sHSPs) are considered to be a crucial
research focus in the fight against parasitic diseases [44].
sHSPs can induce an immune response in the host,
thereby generating potential protection against the
disease [44]. However, the information available about
their role is still insufficient. The presence of sHSPs in
H. diminuta cysticercoids makes this parasite a possible
model to be used in future studies on the role of sHSPs
in host-parasite systems.

A group of proteins recognized in H. diminuta cysti-
cercoids belongs to collagens. In general, collagens have
been classified as proteins carrying antigenic and
immunogenic properties [45, 46]. To the best of our
knowledge, this is the first study to show potential
immunogenicity of collagens forming the metacestode
cyst (collagen alpha, procollagen lysine, and collagen B
type II). Most probably the collagens detected in meta-
cestodes of H. diminuta constitute the cyst wall of cysti-
cercoids. Lee et al. [47] have described the presence of
collagen in the wall of cysts formed by Cysticercus fascio-
laris (metacestode of Taenia taeniaeformis) in different
organs of wild rats. These authors showed that various
types of collagen are engaged in constructing the cysts
at different stages. Similarly, collagen was observed in a
layer surrounding Taenia solium cysticerci in swine [48].
Mixed types of collagens have also been observed to be
moderately distributed within the inflammatory infil-
tration surrounding cysticerci of the parasite Taenia
crassiceps [49]. Taken together, these studies suggest
that high immunogenicity of collagens may help to
establish the infection.

Apart from structural proteins, molecules engaged in
metabolic processes such as phosphoenolpyruvate
carboxykinase (PEPCK) were also identified in this
study. Protein identification of hydatid cysts and adults
of E. granulosus revealed the dominance of paramyosin,
actin, and PEPCK in the adult tapeworms. PEPCK pro-
teins are directly involved in a variety of pathways,
including the excretory, endocrine, and carbohydrate-
metabolism pathways [33].

Other metabolic proteins of the cysticercoid in-
clude 78 kDa glucose-regulated protein (GRP-78)
and apolipoprotein A-I (ApoA-I). GRP78 is an
immunoglobulin member of the HSP70 protein family
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[50]. It has been found that this protein is an immunodo-
minant antigen in echinococcal disease [51]. The results
of research by Yun et al [52] suggest that GRP78
functions as a molecular chaperone in adapting parasites
to the new host environment. Whereas apolipoprotein A-I
is the major apolipoprotein of high density lipoproteins
(HDL) and has an important role in the regulation of the
lipid transport, stability, structure, and metabolism of
HDL particles [53]. In addition, ApoA-I was identified as a
biomarker of T. solium cysticercosis [54]. Our research
shows that ApoAl is a potential antigenic protein
recognized by antibodies of infected animals; however,
Bernthaler et al. [55] found that EmABP (E. multilo-
cularis apolipoprotein) does not work as a parasite
antigen during active infection.

Interestingly, one of the immunogenic proteins charac-
teristic for H. diminuta cyticercoids is the major egg
antigen p40 (mp40). In S. mansoni, the major egg anti-
gen p40 (Smp40) is well characterized as an immuno-
genic protein [56, 57], not only in animal models, as
Smp40 has been described as immunogenic in humans
[58]. In addition, Abouel-Nour et al. [57] indicated the
usefulness of Smp40 as an anti-pathology schistosomal
vaccine candidate by decreasing fibrosis and inhibiting
granuloma formation. On the other hand, S. japonicum
egg antigen p40 (Smj40) can be used as a marker for
early diagnosis of schistosomiasis [59]. As such, the
potential of mp40 in prevention of diseases caused by
tapeworms requires more research.

It has been demonstrated that chronic invasion caused
by parasites may become a significant carcinogenesis
factor and induce cancer development in host tissues
[60]. Recent evidence from one human case indicates
that infection with the low-pathogenic tapeworm H.
nana, a close relative of H. diminuta, may cause a life-
threating situation due to invasion of human tissue by
genetically altered tapeworm cells [61]. H. diminuta is
a common laboratory model of H. nana infections,
therefore information clarifying its interactions with
the host may also provide useful details concerning
development of parasite-originated malignancies in
humans.

We found the presence of retinoblastoma binding pro-
tein (RBBP) in the cysticercoid of H. diminuta. Gene
PRBBP is one of the most extensively studied tumour-
suppressor genes [62]. Since RBBP represents an import-
ant tumor suppressor protein, its dysfunction is a key in
several human tumors. Moreover, molecular and bio-
logical functions of proteins belonging to the RBBP
family, such as RBBP6, are associated with carcinogen-
esis in humans [63]. Therefore, mutations in RBBP genes
may result in malignant transformations in metacestode
cells. Interestingly, malignant transformations have never
been observed in adult cestodes. The efficacy of
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anthelminthic drugs (e.g. albendazole) against clonal
proliferations of tapeworm stem cells is questionable or
even ineffective as observed in H. nana [61]. Thus, other
tumor proteins noted in cysticercoids and other meta-
cestodes may be considered as potential candidates for
anti-invasive helminth cellular proliferation therapies,
and diseases caused by metacestodes in general. This
may include cysticerci and hydatid cysts of taeniids.
However, additional data on the presence and expression
level of RBBP genes is essential to assess the potential
use of anti-RBP therapies in cestode-malignant transfor-
mations in human host tissues.

Conclusions

To our knowledge, the present study represents the first
identification of the antigenic proteins of the metacestode
form of a non-taeniid cestode H. diminuta. Many of the
immunogenic proteins recognized, are known to be associ-
ated with the immunomodulation of the host in response
to infection. Cysticercoids of H. diminuta are armed with
mechanisms known from other parasitic helminths invad-
ing tissues of mammals, and the identified proteins are
known to play crucial roles in host-parasite interactions.
The results suggest that the similarities observed in the
morphology and composition of the neodermatan tegu-
ment (myosins, actins, radixin, spectrin, tubulins, filamins)
provoke an immune response of the host. In response to
the host’s reaction, H. diminuta cysticercoids evolved im-
munomodulatory molecules (paramyosin, HSPs, sHSPs,
GRP78), which are considered to be engaged in preventing
parasite expulsion from the host and guaranteeing success-
ful invasion and long-term survival. However, to clarify the
roles of the individual proteins in host-parasite interactions,
mechanisms of invasion, and survival strategies, additional
experiments and experimental infections should be per-
formed. These should involve detailed and multidisciplinary
approaches in analysis of proteomes, secretomes and ces-
tode exosomes in cysticercoid and other juvenile stages of
the parasite.
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