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Abstract

Background: In order to identify new ways to prevent transmission of vector-borne diseases such as malaria,
efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have
shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A
headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the
volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried
out in Plasmodium falciparum-infected cultures with high and low parasitemias.

Results: A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected
RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the
culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the
SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal,
a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes
and absent from uninfected ones, suggesting that it originates during parasite infection.

Conclusions: The hexanal compound, reportedly a low-level component found in healthy human samples such as
breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This
compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be
produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used
by the parasite as a strategy for transmission.
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Background
Plasmodium falciparum is the protozoan parasite that
causes the most severe variant of malaria cases worldwide
[1]. The development of vector control strategies has been
identified as an important pillar to decrease the malaria
burden through transmission-reducing chemoprevention,
correct insecticide applications and entomological surveil-
lance [2]. Therefore, elucidating the mosquito’s role in
malaria transmission is a key factor to understanding the
deadliest worldwide vector-borne disease. In addition, the

increase in drug-resistant parasites [3] and insecticide-
resistant mosquitoes [4] is driving scientists and policy
makers to develop alternative mechanisms to reduce the
transmission of P. falciparum.
There have been many efforts to decode how mosqui-

toes are attracted to humans in order to look for new
ways to stop transmission. Vector-host interaction stud-
ies have shown that several chemical compounds play an
important role in attracting the Anopheles spp. to hu-
man targets. These chemical attractants include CO2 [5],
octenol [6], indole [7], ammonia [8], lactic acid and ali-
phatic carboxylic acids [9, 10], which are contained in
human breath and sweat. The role of skin-associated
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microflora VOCs has also been identified as a potential
source of vector attraction [11, 12].
However, there is evidence that additional signal

attractants must play a role during malaria infection.
New findings identified an augmented attraction of
mosquitoes to malaria-infected patients, suggesting a
possible parasite manipulation on the physicochemical
activity of the host [13–15] but this influence on humans
by P. falciparum is not yet well understood.
Recent studies have been conducted to compare the

volatile chemical burden during the asexual stage of P.
falciparum in in vitro cultures. One study did not find
any difference between P. falciparum-infected and non-
infected RBCs [16]. However, a more recent report re-
vealed the presence of several P. falciparum-associated
terpenes. Notably, one of them, pinene, was found in
very low quantities in infected red blood cells (iRBCs)
[17]. Interestingly, pinene was previously reported as an
A. gambiae attractant present in plants during sugar
feeding [18]. Nevertheless, further analyses are needed
to correlate that finding with the possibility of a host
manipulation by the parasite to produce vector attraction
signals during malaria infection.
The taking over of the host cell machinery by pathogens

has been reported during several intracellular infections in
bacteria, mammals and plants [19–22]. One such special
control mechanism is the release of extracellular vesicles
(EVs) to improve survival of the pathogen, as in macro-
phage infection by Leishmania parasites [23, 24]. The
extracellular vesicles released from iRBCs during malaria
infection have also been studied over the last few years, re-
vealing that EVs are capable of transporting Plasmodium
spp. molecules (RNA, DNA, protein and lipids) [25–29].
However, the VOC load in EVs has not been characterized
in any malaria report thus far. Therefore, this study aimed
to identify a possible differential content of EVs-VOCs in
in vitro cultures of P. falciparum growing at two different
parasitemias, and the probable relationship between the
higher EV-VOC density and mosquito attraction.

Methods
We cultured the P. falciparum HB3 strain using the con-
ventional method of Trager & Jensen [30] with modifica-
tions described in Almanza et al. [31], that include the use
of modified RPMI 1640 medium (Sigma-Aldrich, St.
Louis, USA), 25 mM HEPES, 15 μM hipoxanthine,
50 mg/ml gentamicine sulfate, and 200 mM L-Glutamine,
supplemented with 10% human serum, 2% sodium bicar-
bonate and a mix of gases (90% N2, 5% O2 and 5% CO2).
Synchronization was performed in a temperature-cycling
incubator (TCI) (Cooled Incubator, Sanyo, Model MIR-
154) and by the addition of 0.3 M alanine (Sigma-Aldrich).
Uninfected red blood cells (uRBCs) were cultured with
the same hematocrit (2%) and media conditions.

Microvesicles were obtained from 25 ml of infected and
uninfected RBCs from three volunteers. Supplementation
media for each T75 culture bottle used the corresponding
serum from each volunteer. Two replicas of uRBCs and of
low (~4%) and high (15–30%) iRBC parasitemia were pre-
pared from the blood of each volunteer. Parasitemia was
evaluated by optical microscopy using Giemsa staining
(GS500, Sigma-Aldrich). The procedure for isolation of
microvesicles was based on a parasitic EV isolation report
[32]. The iRBC and uRBC cultures were collected and
centrifuged at 2000× g for 15 min. The 2000× g superna-
tants were then centrifuged at 15,000× g at 4 °C for
30 min to remove cell debris. Next, these supernatants
were filtered through 0.2 μm low-binding protein filters
(Acrodisc, Pall Life Science, Port Washington, USA) and
the filtered-supernatants were ultracentrifuged at 110,
000× g 4 °C for 70 min to pellet small vesicles. The pellet
was washed once by resuspending it in sterile double-
filtered (0.2 μm) PBS 1X and further ultracentrifuged at
110,000× g for an additional 70 min. The pellet was resus-
pended in 100 μl of double-filtered PBS 1× for analysis,
discarding the supernatant. At the same time, 20 ml of the
supernatant formed in the first ultracentrifugation (SNU)
were collected and concentrated to ~500 μl at 3000× g for
2 h using 3 kDaVivaspin tubes.
The size-characterization of EVs by flow cytometry

(CyFlow, Partec, Kent, UK) was performed using a simi-
lar procedure and parameters to those that have been
used to measure microvesicles in plasma [33]. The EVs,
which were characterized by measuring forward scatter
(FSC) size and side scatter (SSC) granularity, were added
immediately prior to analysis by flow cytometry. We
established gates based on region size by calibrating the
gain of polyethylene beads of different sizes (0.1, 0.5 and
2 μm) (Fluka Analytical, Sigma-Aldrich) before measur-
ing the samples. We determined the background noise
per second with 750 μl of double-filtered (0.2 μm)
phosphate-buffered saline (PBS) solution. Data were
acquired and analyzed using FloMax software. The final
concentration of the samples was calculated using the
software’s True Volumetric Absolute Counting system,
based directly on the basic definition of concentration
c = N/V, using an electrode-principle determination.
Independent cultures at high and low parasitemia were

collected to perform western blot analysis in order to
detect the presence of CD63 (System Biosciences, SBI,
Exo AB kit-1, Palo Alto, USA), a conserved extracellular
vesicle protein commonly used as an EV marker, and
PfMSP1 (Abcam, ab156840, Cambridge, UK) which is a
merozoite membrane protein like the AMA1 used by
Mantel et al. [29]. Also, Glycophorin A,B ( #G7650, Sigma-
Aldrich), the main glycoprotein in the red blood cell
membrane, was used. The antibodies were diluted as
instructed by each manufacturer.
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Samples were analyzed by HSPME-GC-MS. A 1.5 ml
vial containing the sample was sealed and the SPME
extraction was performed with a DVD/CAR/PDMS fiber
(Supelco, Bellefonte, PA, USA). All HSPME extractions
were done at 37 °C for 12 h. All samples were analyzed
by gas chromatography-mass spectrometry analyses
(GC-MS), using an Agilent 6890 N gas chromatographer
connected to a 5975C triple-axis mass selective detector
(Agilent Technologies, Palo Alto, CA, USA). Samples
were injected in splitless mode, with the injector
temperature set at 250 °C. The GC column used for the
study was an HP-5MS, 30 m length, 0.25 mm i.d. and
0.25 μm phase thickness (Agilent Technologies, Palo Alto,
CA, USA). Helium was used as carrier gas at 1.0 ml/min.
The temperature gradient began with an initial temperature
of 50 °C, held for 3 min, increased to 200 °C at 6 °C min−1,
and finally upped to 280 °C at 10 °C min−1. Mass spectrom-
etry detection was performed in the EI mode, with the ion
source temperature, electron energy, and transfer line
temperature set at 250 °C, 70 eV, and 280 °C, respectively.
Identification of all compounds was done based on their
fragmentation patterns using authentic standards when
available, and the NIST 11 data base using mass spectral
deconvolution and identification system (AMDIS). For fur-
ther identification, the retention indices of each compound
were compared with those reported in the literature.

Results
The criteria used to choose the VOCs to which an abun-
dance determination was applied was based on their
presence in at least one of the technical replicates of all
three volunteers. The comparison between their uRBCs
and iRBCs levels was based on the detection of VOCs in
the analysis of all samples [technical replicates of each
parasitemia (2 high and 2 low) and 2 of uRBCs; all from
3 biological samples] from collected EVs, and their
respective SNUs. In light of the limited amount of EVs
collected from uRBCs, the two technical replicates of
EVs from each volunteer were pooled before analyzing
this population. This resulted in a total of 15 EV samples
(3 uRBCs and 12 iRBCs) and 18 SNUs.
The concentration of EVs varied from sample to sam-

ple (see Table 1 and Additional file 1: Table S1). Around
98% of the EVs had an average size of 0.1 μm when they
were compared with standard microbeads. A reduced

number (2%) of EVs fell in either the 0.5 μm or the
2 μm regions. In addition, the identity of the EVs after
isolation was confirmed through detection of the human
extracellular vesicle conserved marker CD63 and the
parasite-specific membrane protein PfMSP1 by Western
blot (Fig. 1). The typical bands below 30 kDa (one in
duplet) [34], the 43 kDa [35] and a band above 50 kDa,
as shown by the manufacturer, are all present in the blot.
The MSP1 Western blot also reveals the expected
19 kDa band [36] (and in manufacturer’s site) only in
lysates or EVs from infected cultures. In addition, Glyco-
phorin A (GPA), a protein abundant in the membrane of
red blood cells, was used to confirm the collected vesicles’
erythrocytic origin. A number of bands usually due to
various glycosilation and dimerization states showed up in
the blot [37], but most importantly, the EVs collected in
this study were also rich in GPA and confirmed the source
of the samples. The established protocol used to collect
the EVs, their size determination by flow cytometry and
the presence of GPA, PfMSP1 and CD63 in the popula-
tion, altogether, confirm that our samples are extracellular
vesicles from the parasite-infected erythrocytes.
The identity of the VOCs found in this study was char-

acterized after comparing the spectral fragmentation pat-
terns with standards and subjecting the results to spectral
deconvolution. Then, the retention indices, which are
maintained across different types of columns, equipments
and settings, were compared to those in the NIST 11 data-
base (Table 2). In the analysis of EVs from iRBCs and
uRBCs (Additional file 2: Table S2), one of the most abun-
dant VOCs was 2-ethyl-1-Hexanol (Table 3), which is
associated with plastic contamination [16]. Another major
compound in our analysis was 1,3-bis(1,1-dimethylethyl)-
Benzene, likely produced after gamma irradiation is
applied to powder supplements in commercial RPMI [38].
There were no VOCs exclusive to EVs derived from iRBCs
after analyzing all biological and technical replicas, al-
though several molecules were present exclusively in one
or more technical replicas of the iRBCs from a single
volunteer (Additional file 2: Table S2).
Interestingly, 1,2,3-Propanetriol diacetate (Diacetin) was a

commonly present compound on EVs from infected
cultures, having at least 9 hits, reaching an average of 17.8%
of the total parasitic EV VOCs according to the total area
sum (Table 3). Notably, while Diacetin was found in most
samples from infected cultures, it also appeared in one
technical replica of an uninfected volunteer. Other VOCs
discovered only on the iRBCs were benzeneacetaldehyde,
butanoic acid, butyl ester, ethylbenzene and o-xylene, how-
ever they only showed up once in our analysis, while several
other compounds in the iRBCs, as shown in our databases,
also showed up in most SNUs or EVs from uRBCs, as the
alkenes undecane, tridecane, tetradecane and dodecane
(Additional file 2: Table S2; Additional file 3: Table S3).

Table 1 Concentration and size distribution of EV samples

uRBCs iRBCs Low
Parasitemia

iRBCs High
Parasitemia

Size EV/ml (SD) EV/ml (SD) EV/μl (SD)

0.1 μm 74,331 (13,418.9) 77,970 (19,424.8) 200,232 (61,325.4)

0.5 μm 927 (812) 1094 (373.1) 1848 (1557.3)

2.0 μm 395 (295.5) 755 (362.2) 1326 (1053.7)
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The analysis of SNUs was originally performed to dis-
tinguish VOCs in supernatants from those associated to
the EVs. However, a higher number of VOCs was found
in SNUs. We identified 56 different VOCs with variable
frequencies (Additional file 3: Table S3). Only 17 com-
pounds fulfilled the criteria for the analysis in this study

(Table 4). The presence of the same contaminants found
in the EV samples was also detected in SNUs. Of all the
samples analyzed, hexanal appeared to be associated
almost exclusively with SNUs from the iRBCs of all three
volunteers, being absent in all replicas of uRBCs. Con-
versely, 2,2,4-trimethyl-pentane was found in all of the
SNUs from the uRBCs but was completely absent from
those of the iRBCs. Several terpenes such as isoborneol,
borneol and menthol were often found in parasitized
samples, possibly originating from the types of foods
eaten by the volunteers prior to drawing their blood.
These terpenes show a high variability among their rela-
tive areas, representing anywhere from 0.01 to 41.5% of
them in any one sample. Notably, 1-octen-3-ol (a known
mosquito attractant) was found to be increased in SNUs
from iRBCs, although there was a high variability among
samples.

Fig. 1 Extracellular vesicles (EVs) are recognized by common markers. Erythrocytes and EVs were lysed with RIPA buffer. Each lane was loaded with
20 μg of protein sample, as assessed by a Bradford assay, subjected to non-denatured (a) or SDS PAGE (b, c), transferred to polyvinyl membranes and
probed with antibodies against CD63 (a), PfMSP1 (b) and Glycophorin A (c). CD63 specific primary antibodies were used at 1:1000 dilution and a
secondary Goat anti-Rabbit IgG HRP conjugated antibody (System Bioscience) was used at 1:20,000 dilution. MSP1 was used at 1:50 dilution with a
secondary Mouse IgG HRP-conjugated antibody (R&D System) at a 1:1000 dilution. To detect Glycophorin, the E3 clone was used following the
manufacturer instructions. The gel lanes were loaded as follows: M: size marker; Lane 1: uninfected erythrocytes lysate; Lane 2: EVs from uninfected
erythrocytes; Lane 3: infected erythrocytes lysate; Lane 4: EVs from infected erythrocytes at low parasitemia; Lane 5: EVs from infected erythrocytes
at high parasitemia; Lane 6: Human serum. Red arrows mark the bands corresponding to the bands expected

Table 2 Experimental and theoretical retention indices of the VOCs

VOCs Theoretical IR Experimental IR

2,2,4-trimethyl-pentane 691 700

Hexanal 801 809

1-Octen-3-ol 979 987

Nonanal 1104 1111

2-ethyl-1-hexanol 1020 1028

Isoborneol 1160 1167

Menthol 1171 1179

α-Terpineol 1192 1200

Dodecane 1200 1208

1,2,3-propanetriol, diacetate 1230 1236

1,3-bis(1,1-dimethylethyl)-benzene 1249 1258

p-tert-butyl-phenol 1256 1262

Isobornyl acetate 1288 1296

Bornyl acetate 1290 1296

Tridecane 1300 1309

Tetradecane 1399 1407

β-Ionone 1489 1498

Butylated hydroxytoluene 1516 1523

Table 3 Abundance of VOCs of EVs (uRBCs and iRBCs). The total
sum of all the peak areas of each compound in the
chromatograms of all assays is listed. Hits are the number of
replicates in which the compound was found

VOCs Σ Area of uRBCs
(hits out of 3
maximum
replicates)

Σ Area of iRBCs
(hits out of 12
maximum
replicates)

2-ethyl-1-Hexanol 3,737,076 (3) 17,333,851 (12)

1,3-bis(1,1-dimethylethyl)- Benzene 3,737,076 (3) 13,753,288 (9)

1,2,3-Propanetriol, diacetate 1,509,468 (1) 12,786,280 (9)

Dodecane 967,212 (1) 5,347,592 (3)
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A graph of the three main findings of this study is
presented in Fig. 2 where the difference in expression or
production of each VOC is stressed.

Discussion
The hypothesis of host manipulation by the parasite to in-
duce mosquito-attractant VOCs through EVs was tested
due to the capacity of the latter to transport key signal
molecules. In this study, EVs isolated from P. falciparum-

infected cultures, and the supernatants of those cultures
at two different parasitemias, were analyzed for their VOC
content. To validate the source of the compounds, immu-
noblots were used with common markers of extracellular
vesicles [39]. The blots revealed that CD63 is enriched in
all EVs, regardless of infection by the pathogen. The mero-
zoite membrane protein MSP1, cleaved by serine prote-
ases to give its 19 kDa size [36], is present only in
extracellular vesicles from iRBCs, as expected, and is also

Table 4 Abundance of VOCs from SNUs (uRBCs and iRBCs). The total sum of all the peak areas of each compound in the
chromatograms of all assays is listed. Hits are the number of replicates in which the compound was found

VOCs Σ Area of uRBCs (hits out of 6 maximum replicates) Σ Area of iRBCs (hits out of 12 maximum replicates)

1,3-bis(1,1-dimethylethyl)-Benzene 175,199,553.0 (6/6) 280,310,131.0 (12/12)

Isoborneol 175,199,553.0 (6/6) 240,190,385.0 (11/12)

2-ethyl-1-Hexanol 175,199,553.0 (6/6) 280,310,131.0 (12/12)

Dodecane 175,199,553.0 (6/6) 280,310,131.0 (12/12)

Tetradecane 175,199,553.0 (6/6) 280,310,131.0 (12/12)

p-tert-butyl-Phenol 175199553.0 (6/6) 280,310,131.0 (12/12)

α-Terpineol 175,199,553.0 (6/6) 280,310,131.0 (12/12)

1-Octen-3-ol 140,850,914.0 (4/6) 280,310,131.0 (12/12)

Nonanal 175,199,553.0 (6/6) 212,397,351.0 (8/12)

Menthol 161,415,286.0 (5/6) 243,569,806.0 (11/12)

Isobornyl acetate 146,838,216.0 (4/6) 269,475,284.0 (11/12)

Hexanal 0/6 280,310,131.0 (12/12)

trans-β-Ionone 28,162,111.0 (1/6) 165,488,621.0 (7/12)

Tridecane 86,806,175.0 (1/6) 86,803,949.0 (3/12)

Bornyl acetate 28,361,337.0 (2/6) 10,834,847.0 (1/12)

2,2,4-trimethyl-pentane 175,199,553.0 (6/6) (0/12)

Butylated hydroxytoluene (0/6) 86,803,949.0 (3/12)

Fig. 2 Difference in abundance of VOCs in P. falciparum-infected vs uninfected cultures. The peak areas of three volatile organic compounds, a
1,2,3-propanetriol diacetate (found in the EVs) from uRBC and iRBC and b 2,2,4-trimethyl-pentane and hexanal (found in SNUs) from uRBC and
iRBC were summed up across all replicates and number of experiments. The total area thus found was compared between uninfected samples
and infected ones
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present in the lysate of infected cultures. We have added a
third marker to detect our extracellular vesicles: Glyco-
phorin A. GPA is one of the most abundant proteins in
the membrane of erythrocytic cells, and has numerous N-
and O-glycosylation sites and also several polymorphic
and quaternary structural presentations, making it migrate
at different speeds on the polyacrylamide gels, depending
on its state. We detected the presence of GPA in the cell
lysates and in the EVs of all samples of red blood cell
origin, demonstrating the usefulness of this marker as well
for erythrocytic EVs.
As for the analysis of volatile material, a different meth-

odology from those previously used to analyze standard or
larger volumes of culture [16, 17] was used, which uncov-
ered compounds not previously described as associated
with P. falciparum or with its EVs. In addition, the use of
human sera to culture the parasite offered the opportunity
to perform VOC analysis in a more realistic environment
in comparison with Albumax supplementation used in
previous studies. In this scenario, the biological replicas of
three human volunteers allowed us to understand con-
served or non-conserved VOC production during infec-
tion by P. falciparum. The main obstacle faced in the
study was the high concentration of possible contaminant
compounds that could mask other less abundant VOCs.
Most of these contaminants were present in both samples,
suggesting an extrinsic origin derived from the culture
media or plastic containers.
The high diversity of peak areas displayed by the

replicas for each detected VOC implies a greater com-
plexity than originally anticipated, which is independent
of the level of parasitemia. The presence of diacetin in
the vast majority of the EVs from iRBCs suggests a
possible function in malaria infection. It is tempting to
propose a role for this compound in the attraction of
insects, given the recent report of diacetin being a
phyto-attractant of oil bees [40], although more evidence
is needed to verify this supposition. Additional com-
pounds that were exclusive of the EVs from iRBCs did
not have enough reproducibility to stand out given that
they showed up in the iRBCs of only one out of the
three volunteers.
The main difference in VOCs from uRBCs and iRBCs

cultures was found in SNUs, even though the SNUs
were initially intended to be used only as controls to dif-
ferentiate the VOC-EV association. The terpenes found
in our SNU samples were different from those reported
to have mosquito attraction capacity, such as pinene
[17]. Arguably, pinene and other terpenes not present in
our samples - which contained only EVs or SNUs -
could have their origin in the erythrocytes present in the
sample when Kelly et al. [17] conducted their VOC
search. This would explain why pinene, for example, has
been found in blood from healthy volunteers [41].

Interestingly, the known solvent 2,2,4-trimethyl-pentane,
present probably as a contaminant in the samples of
uninfected RBCs, disappeared from the infected ones, as
if the presence of the parasites had an influence on the
decay of the compound.
As for the SNUs, hexanal was present in all of the

samples of infected RBCs from both high and low para-
sitemia cultures. This compound was recently identified
as a strong phyto-attractant of A. gambiae [18] and has
been tested in mosquito baits [42]. Hexanal has been
reported in several studies as a common marker in hu-
man breath and skin emanations, though these studies
did not find it in the blood of healthy volunteers
[41, 43–45]. Other technical approaches to the VOC
content in humans, however, did find hexanal in normal
plasma and breath, although at very low concentrations in
comparison with the increased levels of hexanal con-
nected to lung cancer patients [46–48], apparently linking
its presence to cellular dysfunction or injury. Intriguingly,
a recent study in humans infected with P. falciparum did
not report hexanal in the breath of infected volunteers
[49]. Although this VOC has been detected in in vitro
cultures of Plasmodium vinckei [50], there have been as
yet no reports on the generation of hexanal during P.
falciparum infection. This compound is likely formed
during membrane lipid peroxidation of cells as reported
by Keller et al. [51], which would include RBCs in stress
conditions [52] such as those encountered during para-
sitic infection. With its demonstrated attractiveness to
the Anopheles mosquito, the production of hexanal
could be advantageous to parasite transmission capabil-
ities although studies are needed to test hexanal
production in vivo in order to determine whether it
plays a significant role in attracting mosquitoes to
malaria-infected patients.

Conclusions
An HSPME GC-MS analysis of extracellular vesicles
and supernatants of P. falciparum-infected and unin-
fected RBCs was conducted. Close to 100 volatile or-
ganic compounds were detected which varied in their
proportion and presence in the samples. Notably, dia-
cetin, an insect attractant found in plants, was present
in most of the extracellular vesicles of infected RBCs
but found only once in the EVs of a healthy RBC sam-
ple, suggesting a possible role during malaria infection.
Additionally, hexanal, not found in previous analyses of
P. falciparum-infected patients, was present in our
study in all supernatants coming from infected blood
but absent in those from uninfected blood. It is note-
worthy that hexanal has been described as an A. gam-
biae attractant in plants and, although it is possible
that this compound is a by-product of the process of
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parasitic infection of the erythrocytes, its mosquito-
attraction capabilities could be used by the parasite as
a strategy to increase the likelihood of transmission.
Although more studies are required in patients infected
with P. falciparum to confirm these findings, this informa-
tion could be significant in the development of strategies
aimed at preventing transmission by offsetting the parasite’s
vector-attracting capabilities.

Additional files

Additional file 1: Table S1. Characterization by flow cytometry. Raw
readings show the size of isolated extracellular vesicles (EVs from three
volunteers (biological replicates). In addition, PBS 1X was also analyzed to
eliminate the buffer background. Numbers were obtained after averaging
the raw data. (XLSX 50 kb)

Additional file 2: Table S2. Detection of VOCs in extracellular vesicles
(EVs). Raw data show the abundance area of each VOC in every sample
from all volunteers. The total sample area is the sum of all samples.
(XLSX 14 kb)

Additional file 3: Table S3. Detection of VOCs in SNUs. Raw data show
the abundance area of each VOC in each sample from all volunteers. The
total area sample was summed up for each sample. (XLSX 20 kb)
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