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Abstract

geographical distribution.

Background: Japanese encephalitis (JE) is one of the most significant aetiological agents of viral encephalitis in
Asia. This medically important arbovirus is primarily spread from vertebrate hosts to humans by the mosquito
vector Culex tritaeniorhynchus. Knowledge of the contemporary distribution of this vector species is lacking, and
efforts to define areas of disease risk greatly depend on a thorough understanding of the variation in this mosquito’s

Results: We assembled a contemporary database of Cx. tritaeniorhynchus presence records within Japanese encephalitis
risk areas from formal literature and other relevant resources, resulting in 1,045 geo-referenced, spatially and temporally
unigue presence records spanning from 1928 to 2014 (71.9% of records obtained between 2001 and 2014). These
presence data were combined with a background dataset capturing sample bias in our presence dataset, along with
environmental and socio-economic covariates, to inform a boosted regression tree model predicting environmental
suitability for Cx. tritaeniorhynchus at each 5 x 5 km gridded cell within areas of JE risk. The resulting fine-scale map
highlights areas of high environmental suitability for this species across India, Nepal and China that coincide with areas
of high JE incidence, emphasising the role of this vector in disease transmission and the utility of the map generated.

Conclusions: Our map contributes towards efforts determining the spatial heterogeneity in Cx. tritaeniorhynchus
distribution within the limits of JE transmission. Specifically, this map can be used to inform vector control programs
and can be used to identify key areas where the prevention of Cx. tritaeniorhynchus establishment should be a priority.
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Background

Vector-borne pathogens are spatially confined by the
geographical distribution of both their vectors and hosts
[1]. Therefore, to identify locations at risk of vector-borne
disease transmission, there is a need to identify the vector
species responsible for sustaining transmission of the
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pathogen, and the geographical distribution of these spe-
cies. Vectors are not uniformly distributed within their
overall range and tend to be spatially heterogeneous,
resulting in patches of species occurrence [2, 3]. Under-
standing such spatial variation is essential for discerning
locations of high disease risk, with a greater risk of disease
transmission being associated with areas of high abun-
dance of pathogen-infected vectors [4, 5].

Japanese encephalitis virus (JEV) is an arbovirus in the
family Flaviviridae [6] and is one of the most significant
aetiological agents of viral encephalitis in Asia [7].
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Approximately 3.1 billion people live in Japanese en-
cephalitis (JE) endemic areas within 24 countries, and
an estimated 67,000 cases occur annually [8]. Most
infections are asymptomatic or cause nonspecific
influenza-like illness (~99%); however, within the < 1%
of infections resulting in clinical disease, the case fa-
tality rate is approximately 20-30% [8, 9]. Approxi-
mately 30-50% of survivors of JE infection experience
neuropsychiatric sequelae, which can lead to signifi-
cant economic loss [9-11], and methods to control
the disease, such as pig vaccination, relocation or
slaughter, also have a high economic impact [12, 13].
Japanese encephalitis transmission is widespread across
temperate areas of Asia, and JEV has recently spread
south-east, being reported in Australia [14—17]. The virus
exists in an enzootic transmission cycle between mosqui-
toes and a range of amplifying vertebrate hosts, primarily
wading birds of the family Ardeidae (herons and egrets)
and swine (both wild and domestic) [18—21]. Humans and
other mammals such as cattle and horses are dead-end
hosts for the virus as they develop an insufficient level of
viraemia to re-infect mosquitoes, and the virus is not
transmitted directly from person to person [22]. Trans-
mission of the virus to humans from host species requires
enzootic vectors (such as Culex pipiens [23] which habit-
ually bite birds and other hosts) sustaining the enzootic
cycle, as well as bridge vectors which will bite both JEV
hosts and humans [24]. An effective vaccine exists, how-
ever, even in high vaccine coverage areas, JEV has been
shown to circulate in its enzootic stage, presenting a risk
to unvaccinated or nonimmune visitors [25, 26].

There is already a comprehensive knowledge base of
competent vectors for JE, with the mosquito Culex
tritaeniorhynchus Giles, 1901 being implicated as the
primary vector across much of Asia [23, 27-32]. However,
there is little knowledge regarding spatial heterogeneity in
the distribution of this species. The distribution of Culex
tritaeniorhynchus is widespread across South-East Asia
and adjacent tropical areas, extends into the Middle East
[33-35] and Africa [36-38], and has recently been
reported in Europe [39]. The habitat preferences of this
species may vary across its wide range, but it is the envi-
ronments within the limits of JE enzootic transmission
that are of importance when considering locations of JE
risk. As well as being considered the principal vector of
JEV across Asia [40], Cx. tritaeniorhynchus is a competent
vector of several other arboviruses [41-44]. Temporary
and semi-permanent ground pools, and irrigated rice
fields with short and sparse vegetation serve as the main
larval habitats for Cx. tritaeniorhynchus [45, 46], and due
to increasing rice production in Asia, there has been an
expanding availability of suitable breeding sites for this
species [47]. Culex tritaeniorhynchus is an opportunistic
feeder which is predominantly zoophilic, generally
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favouring feeding on cattle over pigs [48]. Despite this
feeding preference, intensified pig farming has decreased
the bridge between humans and vectors, increasing the
likelihood of anthropophagy and resulting in high inci-
dence of JE in areas where pig farms are situated close
to human dwellings [49]. Culex tritaeniorhynchus is
exophagic, and although biting periodicity differs across
Asia, this species is a night-time feeder showing two
peaks in biting time, a few hours after sunset and
around midnight [50, 51].

Future efforts to understand the geographical variation
in human risk of JEV infection in Asia would benefit
from an improved understanding of the spatial distribu-
tion of its primary vector. Species distribution models
have been used to model other mosquito vectors of
medical importance [52—55], and are a useful tool when
considering spatial variation in the risk of mosquito-
borne disease transmission. Previous distribution models
for Cx. tritaeniorhynchus have principally focused on
specific countries of interest (the Republic of Korea,
Masuoka et al. [56] and Saudi-Arabia, Naeem et al.
[57]). One study has modelled this species across mul-
tiple countries but used a limited dataset of occurrence
records due to the amount of published data available at
the time (Miller et al. [58]). More data is now available,
and this presents an opportunity to improve the model-
ling approach previously used, and to address issues
such as sampling bias. Here we provide a contemporary
map showing the environmental suitability for Cx.
tritaeniorhynchus within JE risk areas, which builds on
an existing knowledge of the distribution of this species.

Methods

Overview

With the aim of producing a map of environmental suit-
ability for Culex tritaeniorhynchus across JE risk areas in
Asia, we collated a comprehensive database of geo-
positioned occurrence records for this species. Using an
ensemble of boosted regression tree (BRT) models, a sur-
face predicting the environmental suitability for Cx. tritae-
niorhynchus at each 5x5 km grid square (pixel) was
generated for Southern, Eastern and South-Eastern Asia.
Each model utilised a dataset of geo-referenced species oc-
currence, a background dataset of mosquito survey loca-
tions where the species was not reported, and a suite of
seventeen gridded annual and synoptic environmental and
socio-economic covariates. The final model was used to
predict environmental suitability for Cx. tritaeniorhynchus
at each 5 x5 km pixel within JE risk areas. A schematic
overview of the methods is shown in Fig. 1.

Occurrence dataset
To expand an existing dataset of Cx. tritaeniorhynchus
occurrence [58], a literature search was conducted in



Longbottom et al. Parasites & Vectors (2017) 10:148

Page 3 of 12

Model evaluation

\

Validation statistics

greater than 25 km?

" """""""" ‘\‘ 'r N 'z b
E Background data E i Presence data ! Annual covariate i
i Point (n = 10221) P Point (n = 680) i data !
1 1 1
1 : 1 Polygon (n = 365) 1 (2001-2012) 1
‘\ ______________ _I ‘\ _______________ ,I ‘\ ______________ o )
1 ]
( A
Model fitting and
cross-validation
4 ) " N
Modallbredict I Most contemporary |
odelprediction ke 1 o\ ariate data i
1
1 2012 i
. I J N\ [e012) /
v v
Summarizing

Fig. 1 Overview of the methods. White boxes describe a data process, light grey boxes represent an analysis, and dark grey boxes represent final
outputs. ‘Point’ data refers to records associated with a location less than 25 km? ‘Polygon’ data refers to records associated with a location
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Web of Science, Scopus and PubMed using the search
term “Culex tritaeniorhynchus”. The search was limited
to articles published between 1°* January 2010 and 31*
December 2014 and returned 367 unique citations. Ini-
tial screening of abstracts filtered out articles which did
not report field collections of mosquitoes at a specific
location, or the identification of these mosquitoes to the
species level. Articles were further limited to those
reporting occurrence within Asia, and a more detailed
review of the full texts identified 129 articles that met
these inclusion criteria.

Mosquito sampling sites were identified within each
article and geo-positioned following a variation of exist-
ing protocols [59, 60]. Briefly, if coordinates for the sam-
ple site were provided within the manuscript, we plotted
these coordinates in ArcMap and verified that they
matched the sample location description. If a map show-
ing the location of the mosquito collection sites was pro-
vided within the article, we digitised this map and
extracted coordinates for each of the study sites to ob-
tain the collection location(s). For those articles that did
not provide site coordinates or a map, we obtained coor-
dinates for the sample site by searching for the site name
in a variety of online gazetteers (Google Maps, Geo-
Names and OpenStreetMap). All coordinates were

recorded in decimal degrees. If the sample location was
less than 5 km wide at the widest point, it was treated as
a ‘point’. All locations >5 km were referred to as ‘poly-
gons, and were split into two classes: (1) ‘administrative
polygons’ if a sample site referred to a country’s adminis-
trative divisions (administrative levels 1, 2, or 3, as de-
fined by the UN Food and Agriculture Organization’s
Global Administrative Units Layer project (GAUL) [61]),
and (2) ‘non-administrative polygons’ if a sample site re-
ferred to an area>5 km wide at its widest point which
was not a country’s administrative level 1, 2 or 3 div-
ision. The appropriate GAUL code was recorded for
class 1 polygons, and boundaries were created for class 2
polygons, incorporating the width of the polygon at its
widest point. We describe how polygon data were incor-
porated into our analysis, in detail, in the ‘Model fitting’
section of this paper.

As sampling methodology has been shown to influence
the observed presence and abundance of surveyed mos-
quito species [62, 63], we also recorded the collection
method, time of day of collection, and collection month(s)
where available, to weight absence records of the species
in a location. Data presented for multiple time periods or
multiple sites were disaggregated to single time periods
and sites where possible. For example, when sampling was



Longbottom et al. Parasites & Vectors (2017) 10:148

performed across a range of years (e.g. 2005-2007), we re-
corded separate occurrence events for each specific year
that Cx. tritaeniorhynchus was found (i.e. observations of
Cx. tritaeniorhynchus at a single location in the years 2005
and 2007 were recorded as two separate occurrences). For
studies involving multiple collection sites, an entry was
made for each unique site reporting presence; if it was un-
clear which sampling site was linked to the presence of
the species, a polygon was created to encompass all sam-
pling sites to capture the uncertainty in the precise loca-
tion. Each record was linked to a sampling year to match
the observation with the appropriate land cover data avail-
able for each year between 2001 and 2012.

Culex tritaeniorhynchus presence data were also ob-
tained from the online repositories GBIF (the Global
Biodiversity Information Facility http://www.gbif.org/)
and VectorMap [64]. Data obtained from online reposi-
tories originate mainly from museum records and public
reporting of field surveys, and there are many potential
errors associated with these sources such as inaccurate
geo-positions [65]. We performed spatial validation to
ensure the accuracy of this data by overlaying geo-
positioned points with a raster distinguishing land from
water, and removing any records outside of the land
area. We assigned records with uncertainty surrounding
the true collection location to the next highest level of
geographic precision (as indicated within the ‘Coordina-
teUncertaintyInMeters’ and ‘coordinateUncertaintyln-
Meters’ fields within VectorMap and GBIF respectively).
Studies which did not separately identify Cx. tritaenior-
hynchus from the rest of the Culex vishnui subgroup
were excluded. Records obtained from online repositor-
ies were restricted to those reporting occurrences within
Asia, and replicate coordinate/year combinations were
removed to avoid duplication.

We performed a spatial and temporal standardisation
of the final presence dataset to remove any duplicate re-
cords, retaining only one occurrence record within each
pixel (5 x 5 km) or polygon per the calendar year (as per
Kraemer et al. [55] and Moyes et al. [66]). Records with-
out a collection date were assigned a pseudo-collection
year by selecting a year at random from the distribution
of collection years across our temporally referenced
dataset. The final presence dataset contained Cx. tritae-
niorhynchus occurrence records obtained during the
years 1928 to 2014 inclusive. A histogram showing the
temporal distribution of our occurrence data is provided
as Additional file 1: Figure S1.

Background dataset

Boosted regression tree (BRT) models utilise binary clas-
sification tree algorithms and therefore require both spe-
cies presence and absence data. When true absence data
is not available for a species, background data (also
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known as pseudo-absence data) can be used. Phillips et
al. [67] show that bias in sampling effort can lead to en-
vironmental bias in the resulting model and that if such
bias is not accounted for, ‘a fitted model might be closer
to a model of survey effort than to a model of the true
distribution of a species’. The same study showed that
the use of carefully selected background data points,
which reflect some of the same spatial sampling biases
as the presence data, can improve model performance
compared to using randomly selected background data.
To address both strong spatial biases in survey effort
and lack of available absence data, we assembled a back-
ground dataset consisting of information on the pres-
ence of other mosquito species reported across our
study extent. The records within this dataset are subject
to similar sampling bias to the occurrence data and are
used to expose the model to the range of environments
sampled by mosquito surveys using trapping methods
similar to those used by studies reporting Cx. tritaenior-
hynchus (ie. CDC light traps, resting in/outdoors and
man biting trapping techniques).

Other Culex species share bionomics with Cx. tritae-
niorhynchus and surveys for this genus overlap in their
sampling design, but unfortunately, data for Culex spe-
cies alone did not provide sufficient coverage across our
study extent. We, therefore, used data from surveys of
all available mosquito genera as our background dataset,
providing better spatial coverage and incorporating po-
tential sources of sample bias within our presence data.
Survey data on the presence of Aedes aegypti and Ae.
albopictus obtained from Kraemer et al. [60] were com-
bined with data on the presence of Anopheles mosqui-
toes obtained from the Malaria Atlas Project spatial
repository [68]; data on the presence of other Culex spp.
and all available Aedes spp. obtained from VectorMap
[64]; data available on the presence of mosquitoes within
each of the 41 known mosquito genera obtained from
GBIF and data on Aedes, Anopheles and Culex spp. pres-
ence from PopBio [69]. All background data were sub-
ject to the same spatial and temporal standardisation as
the presence data, records were obtained for Asia only,
and only point records (locations less than 25 km?) and
mosquitoes identified to the species level were retained.

Land-cover and explanatory variables

Carefully selected environmental datasets greatly con-
tribute to the predictive power of species distribution
models [70, 71], and are increasingly used to aid predic-
tions of disease vector distributions [52—55, 66]. Seven-
teen 5x5 km gridded surfaces covering a range of
environmental (7 =15) and socio-economic (7 =2) co-
variates hypothesised to influence the distribution of Cx.
tritaeniorhynchus were included in our model (sum-
marised in Table 1).
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Table 1 Covariates used in the model. The table contains
information on the source, data type, and temporal resolution
of the covariates used in the model

Temporal resolution Covariate Source
Synoptic Land surface temperature Gap-filled MODIS
(LST) day (Mean) LST data [81]

Land surface temperature
(LST) day

(Standard deviation)
Land surface temperature
(LST) night (Mean)

Land surface temperature
(LST) night

(Standard deviation)

Tasselled cap wetness
(Mean)

Tasselled cap wetness
(Standard deviation)
Tasselled cap brightness
(Standard deviation)

SRTM Elevation

Gap-filled MODIS
satellite data [76]

Shuttle Radar

Topography
Mission [83]

Annual (2001-2012) Closed shrublands MODIS land cover
(Proportional cover) product [74]

Open shrublands
(Proportional cover)
Woody savannas
(Proportional cover)
Grasslands
(Proportional cover)
Permanent wetlands
(Proportional cover)
Croplands
(Proportional cover)
Cropland natural
vegetation mosaic
(Proportional cover)
Urban and built up
(Proportional cover)
Barren or sparsely
populated
(Proportional cover)

Previous studies have shown that land cover is an im-
portant factor in habitat suitability for mosquito species
[72, 73]. To account for any changes in land cover
throughout our study period, annual surfaces of propor-
tional cell coverage for several land cover classes (Closed
Shrublands, Open Shrublands, Woody Savannas, Grass-
lands, Permanent Wetlands, Croplands, Cropland Nat-
ural Vegetation Mosaic, Urban and Built Up, Barren or
Sparsely Populated) were derived from the International
Geosphere-Biosphere land cover classification available
within the MODIS MCD12Q1 dataset [74] and aggre-
gated to 5 x 5 km grid cells.

Culex tritaeniorhynchus eggs are unable to withstand
desiccation [75], making particularly arid areas environ-
mentally unsuitable. We used mean and standard devi-
ation surfaces for Tasselled Cap Wetness (TCW), and a
standard deviation surface for Tasselled Cap Brightness
(TCB), derived from NASAs moderate resolution
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imaging spectrometer (MODIS) satellite imagery [76] to
quantify aridity. These surfaces were generated from the
original 1x1 km dataset and had been gap-filled to
model values for areas missing data due to cloud cover
using the algorithm of Weiss et al. [77].

Due to the known influences of temperature on the
survival of this species [78-80], separate Land Surface
Temperature (LST) (daytime and night-time) synoptic
mean and standard deviation surfaces were derived from
MODIS 8-daily images spanning the period 2000-2014
[81] which were first gap-filled to remove missing values
[77] and then aggregated to generate synoptic surfaces
[82]. An elevation surface was generated by aggregating
the original 90 m spatial resolution dataset obtained
from NASA’s Shuttle Radar Topography Mission (SRTM)
[83] to 5 x 5 km cells consistent with our other covariates
[82]. Covariates previously showed to be highly correlated
(correlation coefficients of |p| >0.7) were excluded from
our model [84].

Model fitting

We implemented an ensemble BRT model to predict
environmental suitability within JE transmission risk
areas [17]. Boosted regression tree models combine both
regression trees, and boosting (iteratively combining a
group of simple models) algorithms to build a linear
combination of many trees [85], and have been used to
predict the distributions of a number of diseases and dis-
ease vectors [52, 55, 66, 84, 86]. Boosted regression trees
excel at identifying complex interactions between ex-
planatory variables, and demonstrate strong predictive
power when compared to other modelling approaches
[87, 88].

We fitted 200 sub-models, each of which was trained
to a separate bootstrap of our occurrence and back-
ground data, subject to a constraint that the bootstrap
contained a minimum of 30 occurrences and 30 back-
ground records. If any record selected for an individual
bootstrap was linked to a polygon location, a single 5 x
5 km pixel from within that polygon was selected at ran-
dom. In this way, different pixels from within each poly-
gon were used for each model run within the ensemble,
and the uncertainty in the precise location of the record
could be accounted for. That is, if the environments
within a polygon were highly variable then the variation
in the covariate data provided to the different sub-
models was also greater, resulting in higher variation in
the model outputs. This technique results in a Monte
Carlo simulation integrating uncertainty in the spatial lo-
cation of the true sample site, assuming that the likelihood
of mosquito sampling is equal across all pixels. Each sub-
model was fitted using the gbm.step procedure in the
dismo R package [89] to identify, by cross-validation, the
number of trees that maximised predictive capacity in the
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held-out dataset. The remaining hyperparameters of the
BRT algorithm were: tree complexity =4, learning rate =
0.005, bag fraction = 0.75, cross-validation folds = 10, step
size = 10. As the number of background records was con-
siderably higher than the number of occurrence records,
we adjusted the weight of background records in each
sub-model so that their weighted sum was equal to the
weighted sum of occurrence records. This procedure has
been shown to increase the model’s ability to discriminate
between presence and background data [90].

Environmental values for the locations of each occur-
rence and background data point were extracted from
the covariate data surfaces. In addition, land cover values
were extracted for the year matching each occurrence
and background data point between 2001 and 2012 (e.g.
a presence record obtained during a 2008 collection was
assigned land cover class values from the 2008 MODIS
land cover surfaces) (73.43% of occurrence records were
obtained via sampling between 2001 and 2012). Records
obtained from collections performed before 2001
(22.07% of occurrence records) were assigned the 2001
land cover values, and records from collections after
2012 were assigned 2012 land cover values (4.5% of
occurrence records). Each sub-model prediction was
made using the most contemporary land cover class
covariates (i.e. 2012).

Model prediction and evaluation

We calculated the mean predicted value of environmen-
tal suitability of the 200 sub-models for each 5 x
5 km pixel within our study extent. Model performance
was analysed using the area under the receiver operator
curve (AUC) statistic [91] under ten-fold cross valid-
ation. The cross-validation process separates the data set
into ten subsets containing approximately the same
number of occurrence and background points. The sub-
model is then iteratively trained using nine of the data
subsets, and the performance in predicting the withheld
data is evaluated by statistics for AUC, Kappa [92], sen-
sitivity, specificity and the proportion correctly classified
(PCC). An AUC value was calculated for each sub-
model, given as the mean of the cross-validated AUC
across all ten folds. During cross-validation, we used a
pairwise distance sampling procedure to prevent the in-
flation of the evaluation statistics due to spatial sorting
bias in the cross-validation subsets [93]. This pairwise
distribution sampling procedure results in a lower AUC
but is more reliable as the value is not inflated. The
AUCs were then averaged across the 200 sub-models to
provide an overall estimate of predictive performance in
the ensemble. The remaining statistics were also gener-
ated for each sub-model, and a mean calculated: (i)
Kappa statistic, showing the degree of agreement be-
tween the prediction and the observed truth (presence
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records), taking account of the fact that some of these
classifications may have happened simply by chance; (ii)
sensitivity, given as the proportion of species observa-
tions correctly predicted; (iii) specificity, given as the
proportion of background data points correctly pre-
dicted; and (iv) PCC, given as the proportion of sites in
which the model correctly predicted whether the species
occurred or were unobserved. A PCC of 0 means that
the model predicted all background points as occurrences/
vice versa, and a PCC of 1 means that all occurrence and
background points were correctly predicted.

Relative influence of covariates

The relative influence of each covariate used in this
study was quantified based on its ability to explain vari-
ance in the training dataset. A relative influence (%) was
calculated as the sum of the number of times a particu-
lar variable was selected for splitting a regression tree in
each sub-model, weighted by the squared improvement
to the overall model averaged over all trees in the sub-
model [94].

Masking

The final model prediction was masked by the known
limits of JE risk, as defined by the Centers for Disease
Control and Prevention (CDC) [17].

Results

A total of 1,045 Cx. tritaeniorhynchus spatially and tem-
porally unique presence records were identified, consist-
ing of 680 points and 365 polygons. The background
dataset comprised of 10,211 records, representative of
250 mosquito species. The spatial distribution of the
presence and background data used to train and fit the
model is shown in Fig. 2. All occurrence data obtained
from our literature search has been provided as a
supplement to this publication (see Additional file 2:
Table S1), to ensure reproducibility.

The model prediction of the environmental suitability
for Cx. tritaeniorhynchus at each 5 x5 km pixel within
the JE risk area is displayed in Fig. 3, and a GeoTIFF of
this output is provided as Additional file 3: Geospatial
Data S1 so that readers can explore areas of interest in
more detail. Overall, ten-fold cross-validation statistics
for the model ensemble resulted in an AUC of 0.71 +
0.002 standard error, demonstrating moderate predictive
power (an AUC of 0.5 is equivalent to ‘random draw’
prediction). Other validation statistics returned for the
ensemble were (i) Kappa=0.40+0.009 standard error,
(ii) sensitivity = 0.667 + 0.006 standard error, (iii) specifi-
city = 0.732 + 0.006 standard error, and (iv) PCC =0.70 +
0.005 standard error. A map of model uncertainty
(standard deviation on the logit scale) is provided within
Additional file 4: Figure S2.
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Fig. 2 Location of presence and background data used in the model. The map shows the Culex tritaeniorhynchus presence points (red) and
background mosquito species points (blue) within the study extent. An extent for Japanese encephalitis limits is also shown (black), as published

The model output was restricted to the reported range
of JE [17]. The predictions of high Cx. tritaeniorhynchus
environmental suitability primarily occurs above the
Wallace line, and suggest that Cx. tritaeniorhynchus is
predominantly an Asiatic species, with highly suitable
environments located across India, Nepal and China.

In China, the areas with high predicted environmental
suitability encompass most of the known presence loca-
tions (Fig. 2), and suitability is also predicted in several
provinces for which presence data is lacking (Gansu
Sheng in northwest China, Shaanxi Sheng in northwest
China, Hunan Sheng in south - central China and
Henan Sheng in south-central China). Due to the sparse
availability of data for Indonesian Borneo (Kalimantan),
Sumatra and the Philippines, it remains unclear if areas
predicted to be highly suitable are already inhabited or
have yet to be colonised by the species.

The predictor with the highest relative influence on
the Cx. tritaeniorhynchus environmental suitability
model was Land Surface Temperature day (standard de-
viation), which is expressed as the standard deviation in

MODIS 8-daily images spanning the period 2000-2014.
Land Surface Temperature night (mean) and Land Sur-
face Temperature day (mean) had the third and fourth
highest relative influence on the model, with SRTM
Elevation having the second highest relative influence.
The covariates that proved to be the top predictors,
and their relative influence on the model, are given in
Additional file 5: Table S2.

Discussion

We have provided robust estimates for the spatial het-
erogeneity in Cx. tritaeniorhynchus distribution within
the limits of JE transmission. Evaluation statistics show
that the predictive performance of the model was good,
and the resulting predictions of high environmental
suitability in India, China and Nepal concur with the
high reported incidence of JE in these areas (China,
annual incidence of 3.4/100,000; India, 1.5/100,000;
Nepal, 2.8/100,000 [8]). Alongside high predictions of
environmental suitability in India, China and Nepal,
our model has predicted varying levels of suitability
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Fig. 3 Predicted environmental suitability for Culex tritaeniorhynchus within areas at risk of Japanese encephalitis transmission. The map shows
the predicted relative environmental suitability for Culex tritaeniorhynchus at each 5x 5 km gridded cell within the limits of Japanese encephalitis
[17], on a scale of low environmental suitability (0) to high environmental suitability (1.0)

for Cx. tritaeniorhynchus within the other countries
listed by the CDC as at risk of Japanese encephalitis
virus infection (Fig. 3) demonstrating a potential
source of variation in JE risk at a subnational scale.
Our model also helps to highlight regions within
countries that have a high environmental suitability
for Cx. tritaeniorhynchus, but a lack of reported spe-
cies presence, for example, Rajasthan State (North-
West India); Sind Province (South-East Pakistan);
Hokkaido Prefecture (Northern Japan), and Primorskiy
Kray (South-East Russia).

Our covariates aim to account for land cover changes
over time by informing the model of the conditions at
each occurrence site at the time of sampling using an-
nual data layers. Furthermore, the covariates used here
encompass the majority of land cover classes thought to
influence the species’ distribution [95, 96]. One limita-
tion, however, is that the annual land cover surfaces used
here were only available for the years 2001-2012, and
the data included in our model exceed this date range
(1928-2014). Despite this limitation, the inclusion of
appropriate land cover surfaces is an advancement on

the approach used within the previous multi-country Cx.
tritaeniorhynchus modelling study, where a static, pro-
portional rice coverage surface was the only land cover
class used [58]. We also improved previous predictions
of environmental suitability for Cx. tritaeniorhynchus by
adopting methods to account for spatial uncertainty
within the area sampled. The previous multi-country
prediction of the spatial distribution of Cx. tritaenior-
hynchus [58] utilised the centroid coordinates for admin-
istrative polygons, ignoring the uncertainty surrounding
the true collection location, and their model, therefore,
did not account for the high levels of diversity amongst
environments in large areas. The inclusion of both point
and polygon records here, and iteratively subsampling
these polygons, enabled us to include much greater data
coverage in China, increasing the volume of species oc-
currence data available to the model by over seven-fold
(1,045 presence records in our study vs 148 in the previ-
ous work [58]). The covariates used here do not capture
all of the potential sources of variation that may influ-
ence mosquito habitat suitability (factors such as preda-
tion and intraspecific competition are hard to quantify);
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however, the utilization of more than one land cover
class ensured that the influence of vegetation on habitat
suitability was more fully accounted for in our model.
The spatial resolution of our covariates (5x5 km) also
does not account for micro-habitats which may result in
increased environmental suitability [3].

Another constraint in our modelling process was the
lack of Cx. tritaeniorhynchus absence data. We, there-
fore, constructed a presence-only data model using a
carefully selected background dataset, capturing biases
in our presence data, to improve model performance
[67]. Future model predictions of the environmental
suitability for Cx. tritaeniorhynchus would benefit from
further sampling in areas lacking in presence data where
JEV has been identified, or from the public release of
mosquito survey data already obtained within these
areas. The use of a carefully selected background dataset
within this study presents another methodological im-
provement on the previous multi-country Cx. tritaenior-
hynchus modelling study [58], which, through the use of a
Maximum Entropy technique, assigned background data
randomly across their study extent thus not accounting
for potential sampling bias within their presence dataset.

The lack of Cx. tritaeniorhynchus occurrence records
in several provinces with highly suitable environments in
China (Gansu Sheng in northwest China, Shaanxi Sheng
in northwest China, Hunan Sheng in south central
China and Henan Sheng in south-central China), and
throughout much of Nepal (Fig. 3), suggest that there is
either a lack of mosquito sampling or reporting here, or
that the species is not occupying the environments iden-
tified as suitable within these provinces. If the former is
true, our map can be used as a basis for highlighting
locations within these provinces where increased surveil-
lance of both mosquito and pathogen should be per-
formed, and if the latter is true, our map can be used to
identify areas where prevention of Cx. tritaeniorhynchus
establishment should be a priority.

Transovarial transmission (vertical transmission
from parent to offspring) of JEV in Cx. tritaenior-
hynchus has been demonstrated within the laboratory
[97]. This factor, combined with the ability of the vec-
tor to overwinter at the extremes of its range [98, 99]
and to disperse large distances [100], present the threat
of both Cx. tritaeniorhynchus and JEV expanding to
and establishing in novel suitable environments. Bird
species within the family Ardeidae are migratory, add-
ing to the potential for JE to spread to new regions
[101, 102]. This study did not aim to model the full
global range of Cx. tritaeniorhynchus, which extends
into the Middle East, Africa and Europe [33-39], but
the methods used here could be extended and com-
bined with information on Ardeidae migration to
predict the potential spread of JEV.
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In the last few decades, JEV has expanded its geo-
graphic range within Asia [14-16, 103, 104]. Factors
influencing this expansion are uncertain, but may in-
clude an increase in rice farming (increasing the
availability of larval habitats for Cx. tritaeniorhynchus
[47]), an increase in pig farming (bridging the gap be-
tween human-mosquito interaction [49]), potential
changes in bird migratory patterns [101, 102], and
possible disease spread due to wind-dispersal of infec-
tious mosquitoes [1, 100]. To identify areas suitable
for sustaining disease transmission to ensure effective
preventative methods are enforced, we must ascertain
environments which are suitable for the triad of
pathogen, host, and vector. Here, we have identified
areas within Asia which are likely to be suitable for
mosquito establishment.

The focus of our study was the primary vector Cx.
tritaeniorhynchus, but other mosquito species have been
implicated as primary or secondary vectors of JEV
(including other members of the Culex vishnui subgroup
(Culex vishnui and Culex pseudovishnui) [105], Culex
fuscocephala Theobald [27, 106, 107], Culex gelidus
Theobald [27, 106, 107] and Culex whitmorei Giles
[107]). Our map should not, therefore, be interpreted as
a map of JE risk. Areas of low environmental suitability
for Cx. tritaeniorhynchus, which are known areas of JE
transmission (such as Malaysia and Indonesia, annual in-
cidence of 1.7-3.7/100,000 [8]), should be investigated
to determine the primary and secondary species respon-
sible for transmission in these areas. Understanding JE
vector species composition in locations of high JE trans-
mission is vital as mosquito bionomics differ by species,
and interventions targeting Cx. tritaeniorhynchus may
not necessarily apply to vectors exhibiting different be-
havioural traits [108].

Conclusion

Our map defines geographic variation in suitability for
Cx. tritaeniorhynchus within the limits of JE transmis-
sion, and thus contributes towards efforts to under-
stand the spatial epidemiology of JE. It can be used to
aid predictions of current and future changes in disease
distribution. Specifically, this map can be used to in-
form vector control programs, highlighting areas which
would most benefit from the use of insecticides and
areas which would be ideal locations for sentinel sites
to monitor vector abundance and disease presence.
This map, coupled with fine spatial resolution maps of
JE distribution if available, can also be used in educa-
tion campaigns to inform individuals of control
methods to prevent vector establishment and disease
spread in areas of high environmental suitability for
Cx. tritaeniorhynchus.
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Additional file 1: Figure S1. Temporal distribution of Culex
tritaeniorhynchus occurrence data. Histogram showing the number of
spatially unique Cx. tritaeniorhynchus occurrence records per year in our
dataset (1928-2014). 73.43% of occurrence records were obtained during
the years for which we have annual land cover class layers (2001-2012),
as indicated by orange x-axis breaks. (docx) (DOCX 85 kb)

Additional file 2: Table S1. Occurrence data used to fit and train the
model. The file contains geo-positioned occurrence data obtained from
literature searches and GBIF. An ‘OBJECTID' is provided for VectorMap
data to allow readers to obtain the same records used within this study
directly from the source. (.csv) (CSV 709 kb)

Additional file 3: Geospatial Data S1. Model output data for Culex
tritaeniorhynchus. Mean model output, showing relative environmental
suitability for Culex tritaeniorhynchus. Pixel values range from 0 (low
environmental suitability) to 1 (high environmental suitability). This file
can be opened in GIS software such as QGIS (http://www.qgis.org/) or
ArcMap (http://www.esri.com/software/arcgis). (tif) (TIF 9082 kb)

Additional file 4: Figure S2. Map of model uncertainty. Standard
deviation values for each pixel were calculated across the model
ensemble on the logit scale. Areas from lower to higher standard
deviation values are shown. (docx) (DOCX 1008 kb)

Additional file 5: Table S2. The relative influence of each covariate on
the model. The relative influence of each covariate in rank order,
including mean (%), 2.5% quantile and 97.5% quantile values. (docx)
(DOCX 14 kb)
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