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Abstract

Background: Anopheles anthropophagus is one of the major vectors of malaria in Asia. MicroRNAs (miRNAs) play
important roles in cell development and differentiation as well as in the cellular response to stress and infection. In
a former study, we have investigated the global miRNA profiles in relation to sex in An. anthropophagus. However,
the miRNAs contributing to the blood-feeding and infection with Plasmodium are still unknown.

Methods: High-throughput sequencing was performed to identify miRNA profiles of An. anthropophagus midguts
after blood-feeding and Plasmodium infection. The expression patterns of miRNA in different midgut libraries were
compared based on transcripts per million reads (TPM), and further confirmed by Northern blots. Target prediction
and pathway analysis were carried out to investigate the role of regulated miRNAs in blood-feeding and
Plasmodium infection.

Results: We identified 67 known and 21 novel miRNAs in all three libraries (sugar-feeding, blood-feeding and
Plasmodium infection) in An. anthropophagus midguts. Comparing with the sugar-feeding, the experssion of nine
(6 known and 3 novel) and ten (9 known and 1 novel) miRNAs were significantly upregulated and downregulated
respectively after blood-feeding (P < 0.05, fold change = 2 and TPM 2 10). Plasmodium infection induced the
expression of thirteen (9 known and 4 novel) and eleven (9 known and 2 novel) miRNAs significantly upregulated
and downregulated, respectively, compared with blood-feeding. The representative upregulated miR-92a in
blood-feeding and downregulated miR-275 in Plasmodium infection were further confirmed by Northern Blot.
Putative targets of these regulated miRNAs were further investigated and classified into their pathways.

Conclusions: This study suggests that miRNAs are involved in the blood-feeding and Plasmodium infection in
An. anthropophagus midgut. Further studies of the function of these differential expressed miRNAs will facilitate in
better understanding of mosquito biology and anti-parasite immunity.
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Background

Malaria, caused by Plasmodium parasites, is a major
threat to human health worldwide. According to the re-
ports from WHO, there were 214 million new infection
cases of malaria, and about 438,000 malaria deaths world-
wide in 2015 [1]. Plasmodium spp. are transmitted to
humans by the blood-feeding of Anopheles mosquitoes.
To accomplish the life-cycle, the Plasmodium must over-
come numerous attacks from the innate immunity system
in mosquitoes [2, 3]. Mosquitoes also have developed vari-
ous mechanisms to confront Plasmodium infection [3, 4].
The midgut represents the first barrier for the survival
and development of Plasmodium [4—6]. A key concept
that has emerged from recent studies is the molecular
mechanisms of mosquito midgut that negatively and
positively modulate the invasion of the parasite [5, 6].

MicroRNAs (miRNAs) are 18-24 nucleotides non-
coding RNAs that regulate gene expression at the post-
transcriptional level [7]. They are now considered as a key
mechanism of gene regulation in many cellular processes
including development, differentiation, apoptosis and in-
nate immunity [8—10]. miRNAs are also involved in the
physiological functions of mosquitoes, such as sexual
differences and blood-feeding, even in the control of viral
and parasitic infections [11-16]. Until now, the miRNA
profiles of midguts from Anopheles gambiae and Anopheles
stephensi have been reported, and several miRNAs expres-
sion levels were shown to be altered during the response to
blood-feeding and Plasmodium infection [13, 15-18]. For
example, blood-feeding and Plasmodium infection in An.
stephensi revealed regulation of 13 and 16 miRNAs
respectively [18]. Anopheles anthropophagus is a species of
mosquito that sucks human blood and transmits malaria
(Plasmodium vivax and Plasmodium falciparum) as well
as Brugia malayi filariasis in Southeast Asia [12, 19, 20].
The role of miRNAs in An. anthropophagus during blood-
feeding and Plasmodium infection are still unknown.

In this study, we employed small RNA sequencing to
identify miRNA expression profiles from three samples
of An. anthropophagus midguts: sugar-feeding, blood-
feeding and Plasmodium infection. The differential
expression of miRNAs were further analyzed by target
prediction and pathway analysis to reveal their roles
in blood-feeding and Plasmodium infection. Our results
provide novel regulated miRNAs information of An. an-
thropophagus during blood-feeding and parasite infection.
Understanding the functions of these regulated miRNAs
will help investigate mosquito biology and control
mosquito-borne infectious diseases.

Methods

Mosquito rearing and Plasmodium infection

Anopheles anthropophagus (China wild type strain) was
reared and maintained in humidified incubators at 26 +
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1 °C on a 12 h light:dark cycle as described previously
[12]. Mice (18-20 g male ICR mice) were used for
mosquito blood-feeding and Plasmodium infection ex-
periments. Stock solution of Plasmodium berghei ANKA
strain (0.2 ml) were thawed and intraperitoneally (i.p.)
injected into ICR mice by using a 1.0 ml tuberculin
syringe. When the gametocytes were confirmed, naive
4-5 day-old female mosquitoes were fed on P. berghei-
infected or uninfected ICR mice. Mosquitoes were kept
at 26 + 1 °C until dissection.

Mosquito dissections and total RNA isolation

Dissection of female adults midgut was performed 48 h
post-blood-feeding on Plasmodium-infected or uninfected
ICR mice. Adult female mosquitoes with 10% sugar-
feeding were collected as control sample at 48 h. Dissec-
tions were performed on ice in RNAlater® Stabilization
Solution (Ambion, Austin, U.S.A) and kept on ice. The
midguts were dissected from the abdomen as described
before [11]. Total RNAs were extracted from dissected
tissue using mirVana’™miRNA Isolation Kit (Ambion).
Quality and quantity of RNA was checked by using
denaturalization agar gels and Du530 Spectrophotometer
(Beckman, Krefeld, Gemany).

Small RNA sequencing

The small RNA samples were collected and subse-
quently sequenced by illumina Hiseq2000 as described
before [12]. Briefly, the small RNAs were ligated with
RNA adapter followed by reverse transcription using RT
primers. Following PCR amplification of the adaptor
enriched fragments, the PCR-amplified cDNAs were
size-selected using electroelution to obtain the small
RNA population with length 119-134 bp. These small
RNA libraries were then sequenced using illumina
Hiseq2000 (BGI, China). There were 3 biological repli-
cates for each library sequencing.

Computational analysis of small RNA sequencing data

Raw reads generated by high-throughput sequencing
was processed as previously described by us [11, 12]
with slight modifications. First, low quality reads and
reads smaller than 15 nucleotides (nt) were removed
from the three small RNA read datasets of midguts,
respectively. Clean reads derived from deep sequencing
were trimmed and filtered with BOWTIE software to
fetch sequences having an appropriate length (15-32 nt).
Mature and pre-miRNA sequences of available mosquito
species, i.e. Anopheles gambiae and Aedes aegypti, were
used as a reference miRNAs database from miRBase
v.21. Identification of the novel miRNA was performed
by using RNA fold and miRDeep?2 as described before [12].
The small RNA datas have been submitted to the NCBI/
GEO database with the accession number GSE93545.
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Transcripts per million reads (TPM) for each miRNA in all
three libraries was preformed to generate a comparative
analysis of different midgut samples [17, 18]. A heatmap
was generated by MeV software.

Northern blot

Northern hybridizations were conducted using digo
xigenin-labeled miRCURY LNA probes (Exiqon, Vedbak,
Denmark) as described before [12]. Briefly, the midguts
of female mosquitoes were collected at 48 h after blood-
feeding. The total RNA sample was extracted using
mirVana™ miRNA Isolation Kit (Ambion). Total RNA
(20 pg) was loaded in 15% denaturing polyacrylamide gels.
The RNA gels were transferred to a nylon membrane
(Ambion), crosslinked using a UV crosslinker, and prehy-
bridized, then hybridized overnight in the ULTRAhyb-
Oligo Hybridization Buffer (Ambion) with the appropriate
DIG-labeled probe at 42 °C. After washed three times, the
membranes were then incubated for 5 min in develop-
ment buffer. Substrate (1:100 diluted in development
buffer) was applied on to the membranes and incubated
in dark for 10 min. Chemiluminescence signal was then
measured to detect miRNA on the membrane. Antisense
5" digoxigenin-labeled miRCURY LNA probes sequences
as follow, aan-miR-92a: 5'-TCA GCC GCT GTC ACA
CGC ACA G-3'; aan-miR-275: 5'-GAC CAA TCG CCG
TCC CCG CCG-3".

miRNA target prediction and pathway analysis

mRNA targets of regulated miRNAs during blood-feeding
and Plasmodium infection were predicted according to
the protocol reported before [18, 19]. Briefly, 3'UTR se-
quence of An. gambiae and Ae. aegypti were downloaded
from VectorBase and subjected to target prediction using
RNA hybrid tool. Target predictions were carried out
based on the following three parameters: (i) the perfect
complementarity of the miRNA with the 3"'UTR sequence
of mRNA targets; (ii) the energy of the miRNA:mRNA
target duplex<-20 Kcal/mol; (iii) P-value<0.05. The
selected miRNA:mRNA interaction networks were gener-
ated and visualized by Cytoscape.

Statistical analysis

Statistical tests for identifying significant differentially
expressed miRNAs were performed using t-test. The
P-value cut-off was carried out on the data with the
significance selected as 0.05.

Results

Small RNA sequencing analysis

The small RNA libraries were enriched, and separately
yielded 17.51 million, 15.87 million and 6.5 million raw
reads from the midgut samples of sugar-feeding (SF),
blood-feeding (BF) and Plasmodium infection (PI). After
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filtering for linker sequences, and removing ambiguous
reads, high quality clean reads with sizes ranged from 15
to 32 nt were collected, of which 14.45 million (82.56%)
reads for SF, 11.75 million (74.02%) reads for BF, and
about 3.2 million (50.38%) reads for PI (Table 1). The
main populations of small RNA in the length distribu-
tion is 20-23 nt (Fig. 1), of which 10.1 million (68.89%)
reads for SF, 5.76 million for BF (49.01%) and 1.45 mil-
lion for PI (45.51%). The 20—23 nt peaks of small RNA
are consisted with the expected size of microRNAs.
After aligned to the known miRNA and pre-miRNA in
miRBase (version 21.0), the miRNA reads from SF, BF
and PI midguts which can match to the miRBase are
4.03 million, 1.88 million and 0.21million separately
(Table 1).

Identification of miRNAs in midguts of An.
anthropophagus

A total of 67 known and 21 novel miRNAs were identified
in the SE, BF and PI midgut libraries (Tables 2 and 3). Both
known and novel miRNAs were present in the miRNA da-
tabases of An. anthropophagus adult as described before
[12]. The distribution and relative abundance of these
miRNAs were analyzed according to the set of “abundant”
(TPM > 1000) or “rare” (TPM < 10). Most of known and
novel miRNAs were found in the SF library (n = 87) with
29 abundant and 20 rare miRNAs. In case of BF library,
26 miRNAs were found to be abundant and 7 miRNAs
(miR-193, miR-2944b, miR-307, miR-309, miR-79-5p,
miR-965-1 and miR-N6) were not detected. Meanwhile,
27 abundant and 20 rare miRNAs were found in the PI li-
brary, of which 7 miRNAs (miR-193, miR-210, miR-252,
miR-263b-5p, miR-2944b, miR-307 and miR-87) have no
read counts. A novel miRNA miR-N6 is unique in the PI
midguts.

Differential expression of miRNAs after blood-feeding and
Plasmodium infection

To investigate the miRNAs regulated in blood-feeding
and Plasmodium infection, the TPM value of individual
miRNA between BF and SF, PI and BF were compared
in the form of the fold change (Fig. 2). The set of signifi-
cantly regulated miRNAs were selected on the basis of
their P-value <0.05, fold change>2 and TPM =10
(Additional file 1: Table S1 and Additional file 2:
Table S2). With respect to BF library, six known miRNAs
(miR-252, miR-315-5p, miR-92a, miR-92b, miR-932-3p
and miR-989) and three novel miRNAs (miR-N10, miR-
N16 and miR-N21) showed significantly upregulated
expression compared with SF. Especially, the expression
levels for miR-92a, miR-932-3p, miR-N16 and miR-N21
were enhanced more than 5-fold after blood-feeding.
Meanwhile, the expression of 10 miRNAs (miR-1, miR-
1175-3p, miR-12, miR-13, miR-276, miR-279, miR-283,
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Table 1 Composition of small RNAs in midguts of sugar-feeding (SF), blood-feeding (BF) and Plasmodium infected blood-feeding

(P at 48 h

Sample name Raw reads Clean reads (%) 20-23 nt reads (%) Reads matched to known miRNAs
SF 17,510,882 14,457,010 (82.56) 10,104,472 (68.89) 4,032,195

BF 15,875,249 11,750,726 (74.02) 5,759,187 (49.01) 1,878,567

Pl 6,511,125 3,180,161 (50.38) 1447177 (45.51) 209,907

Total 39,897,256 29,387,897 17,310,836 6,120,669

miR-2b, miR-996 and miR-N3) was found to be signifi-
cantly downregulated after blood-feeding (Tables 2 and 3).

In the case of the PI library, 9 known miRNAs (miR-1,
miR100, miR-12, miR-13, miR-263a, miR-276, miR-308-
5p, miR-31, miR-iab-4) and 4 novel miRNAs (miR-N1,
miR-N6, miR-N14 and miR-N20) exhibited significantly
upregulated expression. Notably, the TPM value of aan-
miR-N16 was almost 150-fold enhanced in PI midgut
compared with BF midgut. Meanwhile, the expression of
miR-31 was enhanced more than 10-fold after Plas-
modium infection. On the other hand, the expression
levels of 9 known (miR-133, miR-14, miR-210, miR-
252, miR-2a, miR-275, miR-92b, miR-957 and miR-
980) and 2 novel miRNAs (miR-N16 and miR-N18)
were significantly downregulated in the Plasmodium
infection midgut. In particular, the TPM value for
miR-252 was 191 in BF midgut but zero in the PI
midgut (Tables 2 and 3).

Furthermore, several miRNA exhibited different ex-
pression patterns in BF and PI midguts. For example,
four miRNAs including miR-1, miR-12, miR-13 and
miR-276 were significantly downregulated in the BF
midguts but upregulated in the PI midguts. Conversely,
the expression of miR-252 and miR-N16 showed signifi-
cant upregulation in the BF midguts but were downreg-
ulated in the PI midguts (Tables 2 and 3). These data

suggest that the same miRNAs may play different roles
in the blood-feeding and Plasmodium infection midguts.

Confirmation of mosquito miRNAs

Having identified the microRNAs expression patterns of
An. anthropophagus midguts after blood-feeding and
Plasmodium infection, Northern hybridization was per-
formed to validate some of these miRNAs. The repre-
sentative abundant miRNA (miR-275 and miR-92a) were
selected in the Northern blot analysis. Total RNA from
SE, BF and PI 48 h were probed using locked nucleic
acid (LNA) probe. The expression patterns of miR-275
and miR-92a in SE, BF and PI are shown in Fig. 3. The
northern signals at ~20 nt indicated that the expression
level of miR-92a is upregulated to over 5-fold after
blood-feeding, and miR-275 is downregulated to more than
3-fold after Plasmodium infection, which is consistent with
the sequencing results.

Target prediction and network analysis

Target prediction were carried out to understand the
putative function of regulated miRNAs by using RNA
hybrid (P-value<0.05). All the mRNA targets are
derived from the orthologous genes of An. gambiae in
the Vector Base. Maximum numbers of mRNA targets
were predicted for miR-92a (1 =744). The targets were
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Table 2 List of known microRNAs expressed in An. anthropophagus midguts

Transcripts per Fold change Reference miRNA
million reads(TPM) database

No. Name Length  Sequence SF BF PI BF vs SF Plvs BF  aga aae
1 aan-bantam 23 UGAGAUCACUUUGAAAGCUGAUU 45,0485 24928 74,181 0.553 2975 Y Y
2 aan-let-7 21 UGAGGUAGUUGGUUGUAUAGU 10799 6467 1,1992 0598 1.854 Y Y
3 aan-miR-1** 22 UGGAAUGUAAAGAAGUAUGGAG 78 206 755 0.264 3.665 Y Y
4 aan-miR-10 22 ACCCUGUAGAUCCGAAUUUGUU 60.7 51.9 136 0.855 262 Y Y
5 aan-miR-100* 22 AACCCGUAGAUCCGAACUUGUG 62702 4632 17444 0738 3.766 Y Y
6 aan-miR-1000 21 AUAUUGUCCUGUCACAGCAGU 56.6 129.1 115 2.280 0.89 Y Y
7 aan-miR-11 22 CAUCACAGUCUGAGUUCUUGCU 3,794.7 1775.7 29527 0467 1.662 Y Y
8 aan-miR-1174 21 UCAGAUCUACUUAAUACCCAU 4,040 1,674 3,367.6 0414 201 Y Y
9 aan-miR-1175-3p* 24 UGAGAUUCUACUUCUCCGACUUAA 742122 2,027 4,887.2 0273 2411 Y Y
10 aan-miR-12*" 23 UGAGUAUUACAUCAGGUACUGGU 5,2060.8 1,768.2 13,763.1 0339 7.783 Y Y
11 aan-miR-125 22 UCCCUGAGACCCUAACUUGUGA 3086 257.7 7913 0.835 3.07 Y Y
12 aan-miR-13** 23 UAUCACAGCCAUUUUGACGAGUU 790.5 241.7 1,988.8 0.305 8.228 Y
13 aan-miR-133" 22 UUGGUCCCCUUCAACCAGCUGU 96.3 87.3 174 0.906 0.199 Y Y
14 aan-miR-137 22 UAUUGCUUGAGAAUACACGUAG 20.1 14.8 349 0.736 2358 Y
15 aan-miR-14" 22 UCAGUCUUUUUCUCUCUCCUAU 8,439 3,009.3 1,009.7 0.356 0.335 Y Y
16 aan-miR-184 22 UGGACGGAGAACUGAUAAGGGC 6,949.9 4,432 9,130 0.637 2.06 Y Y
17 aan-miR-1890 22 UGAAAUCUUUGAUUAGGUCUGG 1126 418 80.2 0371 1918 Y Y
18 aan-miR-1891 22 UGAGGAGUUAAUUUGCGUGUUU 38 32 35 0.842 1.093 Y Y
19 aan-miR-190 24 AGAUAUGUUUGAUAUUCUUGGUUG 47 376 349 0.8 0.928 Y Y
20 aan-miR-193 22 UACUGGCCUACUAAGUCCCAAC 0.2 0 0 0 - Y Y
21 aan-miR-210" 19 CUUGUGCGUGUGACAACGG 5.1 1.1 0 2176 - Y Y
22 aan-miR-252*" 21 UAAGUACUAGUGCCGCAGGAG 59 192 0 3.254 - Y
23 aan-miR-263a" 23 AAUGGCACUGGAAGAAUUCACGG 363 50.8 262.7 1399 5.17 Y Y
24 aan-miR-263b-5p 23 CUUGGCACUGGGAGAAUUCACAG 02 1.1 0 5.5 - Y
25 aan-miR-275" 20 UCAGGUACCUGAAGUAGCGC 3,2694 9,040.2 2,0359 2.765 0.225 Y Y
26 aan-miR-276** 20 AGCGAGGUAUAGAGUUCCUA 239 74 279 0309 3.770 Y Y
27 aan-miR-277-5p 22 UAAAUGCACUAUCUGGUACGAC 153 77 14.9 0503 1935 Y Y
28  aan-miR-278 23 ACGGACGAUAGUCUUCAGCGGCC 55.7 22.8 314 0.409 1377 Y Y
29  aan-miR-279* 22 UGACUAGAUCCACACUCAUUAA 2,7875 9262 17465 0332 1.885 Y Y
30  aan-miR-283* 24 CAAUAUCAGCUGGUAAUUCUGGGC  1,231.3 407.5 693.7 0330 1.702 Y Y
31 aan-miR-285 22 UAGCACCAUUCGAAAUCAGUAC 104 23 186 221 0.808 Y
32 aan-miR-2944a 24 GAAGGAACUUCUGCUGUGAUCUGA 99 7. 149 0717 2.098 Y
33 aan-miR-2944b 23 GAAGGAACUCCCGGUGUGAUAUA 1.2 0 0 0 - Y
34 aan-miR-2a" 23 UAUCACAGCCAGCUUUGAAGAGC 3,687.6 1,745.2 4155 0473 0.238 Y
35  aan-miR-2b* 24 UAUCACAGCCAGCUUUGAUGAGCU 7917 269.1 618.2 0339 2297 Y
36 aan-miR-2c 23 UAUCACAGCCAGCUUUGAUGAGC 6574 228 4357 0346 1910 Y
37 aan-miR-305-5p 24 AUUGUACUUCAUCAGGUGCUCUGG  2,8796 1,101.7 3,594 0.382 3.262 Y Y
38 aan-miR-306 22 UCAGGUACUGGAUGACUCUCAG 14,0951 116711 115181 0828 0.986 Y

39 aan-miR-307 20 UCACAACCUCCUUGAGUGAG 13 0 0 0 - Y Y
40 aan—mil:%—308-5p”E 22 AAUCACAGGAGUAUACUGUGAG 854 397 338.2 0464 8518 Y Y
41 aan-miR-309 22 UCACUGGGCAAAGUUUGUCGCA 0.2 0 35 0 - Y

42 aan-miR-31" 23 UGGCAAGAUGUUGGCAUAGCUGA 273 10.7 207 0392 19.35 Y
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Table 2 List of known microRNAs expressed in An. anthropophagus midguts (Continued)

43 aan-miR-315-5p* 22 UUUUGAUUGUUGCUCAGAAAGC

44 aan-miR-317 24 UGAACACAUCUGGUGGUAUCUCAG
45 aan-miR-34 20 UGGCAGUGUGGUUAGCUGGU

46 aan-miR-375-1 22 UUUGUUCGUUUGGCUCGAGUUA
47 aan-miR-71-3p 22 UCUCACUACCUUGUCUUUCAUG
48 aan-miR-79-5p 22 UAAAGCUAGAUUACCAAAGCAU
49 aan-miR-8-5p 23 UAAUACUGUCAGGUAAAGAUGUC
50  aan-miR-87 21 GGUGAGCAAAUAUUCAGGUGU

51 aan-miR-927 22 UUUAGAAUUCCUACGCUUUACC
52 aan-miR-92a* 22 UAUUGCACUUGUCCCGGCCUAU
53 aan-miR-92b*" 22 AAUUGCACUUGUCCCGGCCUGC
54 aan-miR-932-3p* 23 UCAAUUCCGUAGUGCAUUGCAGU
55 aan-miR-957" 22 UGAAACCGUCCAAAACUGAGGC

56 aan-miR-965-1 22 UAAGCGUAUAGCUUUUCCCAUU
57 aan-miR-970 21 UCAUAAGACACACGCGGCUAU

58 aan-miR-980" 24 CGGCCGUUCAUUGGGUCAUCUAGC
59  aan-miR-981 22 UUCGUUGUCGACGAAACCUGCA
60  aan-miR-988-5p 22 CCCCUUGUUGCAAACCUCACGC

61  aan-miR-989* 21 UGUGAUGUGACGUAGUGGUAC

62 aan-miR-996* 21 UGACUAGAUUACAUGCUCGUC

63 aan-miR-998 19 UAGCACCAUGAGAUUCAGC

64  aan-miR-9a 23 UCUUUGGUUAUCUAGCUGUAUGA
65  aan-miR-9b 24 UCUUUGGUGAUUUUAGCUGUAUGC
66  aan-miR-9c 22 UCUUUGGUAUUCUAGCUGUAGA

67  aan-miR-iab-4" 22 ACGUAUACUGAAUGUAUCCUGA

29 12.2 7 4.206 0.573 Y Y
6,342 64622 27958 1.018 0432 Y

5849 3477 990.1 0.594 2.847 Y Y
10 6.9 209 0.69 3.028 Y Y
2796 1743 100.6 0623 0.577 Y
14 0 37 0 - Y Y
1,990.3 33408 22458 1678 0672 Y Y
33 26 0 0.787 0 Y

142 156.1 1569 1.099 1.005 Y

2,103.2 174624 86138 83 0493 Y

5034 22155 366 440 0.165 Y Y
1.7 104 74 6.117 071 Y
98.6 2604 314 2640 0.120 Y Y
2 0 74 0 - Y
4,4355 2,880.7 18372 0649 0.637 Y Y
255 269 49 1.054 0.182 Y
35 77 74 2.2 0.961 Y Y
4 2.2 74 0.55 3363 Y Y
78 360 314 4615 0.872 Y Y
6,082.2 1,855 59333 0305 3.198 Y Y
35 0.5 37 0.142 74 Y
13087 6505 21788 0497 3.349 Y Y
2,386.6 1,1908 38068 0499 3.196 Y Y
89766 44963 12,8565 0500 2.859 Y Y
14.6 33 26.1 0.226 7.909 Y Y

Abbreviations: SF sugar-feeding, BF blood-feeding, PI Plasmodium infection, TPM transcripts per million reads; Fold change, BF/SF or PI/BF, aan Anopheles

anthropophagus, aga Anopheles gambiae, aae Aedes aegypti

*Represents the statistical significance in the differential expression of individual miRNA in BF vs SF (P-value < 0.05)
#Represents the statistical significance in the differential expression of individual miRNA in Pl vs BF (P-value < 0.05)

further analyzed by KOBAS, and a total of 38 different
pathways were regulated by miRNAs after blood-feeding
and Plasmodium infection (Fig. 4). In the upregulated
miRNA after blood-feeding, miR-252 and miR-92a were
identified to target oxidative phosphorylation and
peroxisome pathway. miR-92a was also found to target
glycolysis, proteasome, ribosome and TGF-beta signaling
pathway. Meanwhile, ribosome was commonly targeted by
the downregulated miRNAs including miR-13, miR-279
and miR-2b in BF midguts. After Plasmodium infection,
endocytosis and fructose mannose metabolism pathway is
specifically targeted by miR-31. Spliceosome was common
between miR100 and miR-14. In the downregulated
miRNA, miR-210 and miR-275 targeted RNA transport
and purine metabolism separately (Fig. 4).

The interaction networks of miRNA:mRNA targets
were generated. In BF midguts, AGAP000348-RA and
AGAP000120-RA were targeted by downregulated
miR-1. A total of 493 mRNA targets were regulated by

upregulated miR-989, of which AGAP007839-RA,
AGAP0004451-RA and AGAP008345-RA were targeted
by two or more upregulated and downregulated miRNAs
(Additional file 3: Figure S1). Furthermore, 573 mRNAs
were targeted by upregulated miR-31 in the PI midguts.
Three mRNA (AGAP000204-RA, AGAP009077-RA and
AGAP010306-RA) were targeted by downregulated miR-
957 (Additional file 4: Figure S2). Further investigations
are important to understand the role of these mRNAs
during blood-feeding and Plasmodium infection.

Discussion

Anopheles mosquitoes are the main vector for the trans-
mission of malaria, and the invasion of midguts is one of
the most critical steps for the survival and development
of Plasmodium [21]. Because of the lack of an adaptive
immune system, RNA interference (RNAi) is the most
important and primary defense employed by mosquitoes
to protect themselves from pathogens [22, 23]. miRNAs
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Table 3 List of novel microRNAs expressed in An. anthropophagus midguts
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Transcripts per million reads(TPM) Fold change
No. Name Length Sequence SF BF Pl BF vs SF Pl'vs BF
1 aan-miR-N1* 18 CGCUGCAGUACUGGCGCC 372 175 306.8 0470 17.53
2 aan-miR-N2 21 AUCCGGUGAUAGGCUGACCCG 506 26.5 453 0523 1.709
3 aan-miR-N3* 20 UUAGAAUGUGGAAUCUGUUU 279 74 244 0.265 3297
4 aan-miR-N4 23 UUGGUGUUAUAUCUUACAGUGAG 3,160.5 24621 3824.2 0.779 1.553
5 aan-miR-N5 23 UUGGUGUUAUAUCUUACAGUGAG 9.8 42 10.5 0428 25
6 aan-miR-N6* 20 UAUCACAGCCAGCUUUGAAG 0 0 149.9 - -
7 aan-miR-N7 22 UGCAUUCAGUGGGGCGGUCGUG 4.2 48 35 1.142 0.729
8 aan-miR-N8 22 UGUUAACUGUAAGACUGUGUCG 5.1 1.1 7 0215 6.363
9 aan-miR-N9 21 UAGCACCAUGAGAUUCAGCUC 794,875 861,632.1 704,445.5 1.083 0817
10 aan-miR-N10* 22 UCAAUUCCGUAGUGCAUUGCAGU 80.5 2731 4915 3.392 1.799
1 aan-miR-N11 22 UUGGUGUUAUAUCUUACAGUGAG 14799 592.8 3486 0400 0.588
12 aan-miR-N12 22 GUAGGCCGGCGGAAACUACUUGC 3512 1323 1429 0376 1.080
13 aan-miR-N13 23 UUGGCCGGUACGGGCUGACCGGGC 495 296 55.8 0597 1.885
14 aan-miR-N14* 22 UGAACCGGCGUAGCGUGAAAGCA 84615 3,769.9 18,898.1 0445 5012
15 aan-miR-N15 21 CUAAGUACUAGUGCCGCAGGAG 3,368.1 2,159.9 6,1774 0.641 2.860
16 aan-miR-N16** 19 UUAGAAUGUGGAAUCUGUUU 7557 4,010.7 3242 5307 0.080
17 aan-miR-N17 22 UGAAAUCUUUGAUUAGGUCUGG 593 60.3 1255 1.016 2.081
18 aan-miR-N18* 18 UAUCAGCGGUAGUUACCUG 22.7 1338 35 0.607 0.253
19 aan-miR-N19 20 GUGCAUUGUAGUUGCAUUGCA 37717 1,7169 3,099.1 0455 1.805
20 aan-miR-N20" 18 GUUGCUGUCCGCUGAAGCA 59.8 254 209.2 0424 8.236
21 aan-miR-N21% 23 UGGCAAGAUGUUGGCAUAGCAGCU 14.2 976 134.1 6.873 1373

Abbreviations: N the abbreviation of Novel, SF sugar feeding, BF blood feeding, PI Plasmodium infection, TPM transcripts per million reads; Fold change, BF/SF or PI/

BF, aan Anopheles anthropophagus

*Represents the statistical significance in the differential expression of individual miRNA in BF vs SF (P-value < 0.05)
#Represents the statistical significance in the differential expression of individual miRNA in Pl vs BF (P-value < 0.05)

are the most important part of RNA interference, and
some of them have been proven to be involved in fight-
ing against virus and parasite infections [21-24]. In a
previous study, we have investigated the miRNA profiles
of An. anthropophagus, and discovered that several miR-
NAs exhibit sexual differences and stage-specific func-
tions [12]. However, their role in Plasmodium infection
is poor understood. This study was conducted to identify
and elucidate role of miRNAs after blood-feeding and
Plasmodium infection in An. anthropophagus midguts.

In the present study, the expression profiles of miRNA at
48 h after blood-feeding and Plasmodium infection were
investigated using small RNA sequencing; sugar-feeding
midguts were taken as the control. Compared with sugar
feeding, there is a significant downregulation for the
percent of miRNA library (20-23 nt) after blood-feeding
and Plasmodium infection. The similar downregulation
expression profiling of miRNAs was also reported in the
parasitized blood-feeding midguts of Anopheles stephensi
[18] suggested that pathogens including Plasmodium and
viruses invade mosquitoes midguts by inhibiting or down-
regulating the miRNA expression [22—24].

Blood-feeding is a critical physiological activity for the
mosquito and its ability to transmit disease [25]. Female
mosquitoes take blood meals to carry out egg production,
and acquire pathogens such as malaria parasites and den-
gue viruses from an infected host [26—28]. Furthermore,
mosquito biological characteristics are affected by trigger-
ing a cascade of gene regulatory events in the midgut after
blood-feeding [28, 29]. In this study, the correlation be-
tween blood-feeding and miRNA expression profiles in
An. anthropophagus midguts was investigated. We inden-
tified nine significantly upregulated and ten downregu-
lated expression miRNAs in the blood-feeding midguts
compared with sugar feeding. For example, miR-92a ex-
hibited a significant enhanced expression level after
blood-feeding according to the sequencing and Northern
blot results. Li et al. [11] reported that blood-feeding can
induce the expression of miR-92a in the midgut of Ae.
aegypti females. While Wolbachia infection can downreg-
ulate the expression of miR-92a in mosquito cell [30]. In
our study, the expression of miR-92a is significantly up-
regulated in blood-feeding. By target prediction and net-
works analysis, miR92a was found to target 744 mRNAs
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Fig. 2 Heatmap of differential expressed miRNAs in the An. anthropophagus midgut. Expression profile of known miRNAs (a) and novel miRNAs
(b) in sugar-feeding midgut (SF), blood-feeding midgut (BF) and Plasmodium-infected midguts (PI). Colour scale-bar from light green to dark red
indicates relative increase in miRNA expression

and several pathways including the oxidative phosphoryl- Midgut represents the first barrier for the pathogens
ation, proteasome, ribosome and TGF-beta singaling path-  to establish infection in mosquitoes [2, 4]. Pathogens
way. Our study may shed light on the possible roles of such as parasites and endosymbiotic bacteria are known
miR92a in An. anthropophagus mosquito physiology re-  to alter host miRNA profiles for their invasion and de-
lated to blood-feeding. velopment [15, 31]. For example, Wolbachia can induce

SF BF Pl

aan-miR-275 aan-miR-92a

Fig. 3 Northern blot of differentially expressed miRNAs in the An. anthropophagus midguts. Abbreviations: SF, sugar-feeding midgut; BF, blood-feeding
midgut; P, Plasmodium-infected midgut
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B Proteasome ¥ Protein export
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Fig. 4 KOBAS analysis of miRNA targets. miRNA targets involved in blood-feeding and Plasmodium infection were predicted by RNA hybrid.
Pie chart represents the pathway targeted by the miRNAs which are listed in the pie area
.

B AGE-RAGE signaling pathway in diabetic complications

B Arginine biosynthesis

M Butanoate metabolism

B ECM-receptor interaction

B Fatty acid degradation

B Glycerophospholipid metabolism

W Mismatch repair

B Porphyrin and chlorophyll metabolism
Purine metabolism

¥ Ribosome biogenesis in eukaryotes

B Spliceosome

B TGF-beta signaling pathway

the expression of miR-12 in An. aegypti mosquito cells  in Plasmodium infection of An. anthropophagus need to
to maintan the persistence of infection [31]. In our be further elucidated. Meanwhile, we also found down-
study, we indentified 13 upregulated miRNAs including regulated expression for 11 miRNA in Plasmodium
miR-12. This finding suggests that miR-12 is also in- infection midguts of An. anthropophagus, six of which
volved in Plasmodium infection, and the role of miR-12  including miR-14, miR-2a, miR-92b, miR-957, miR-980
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and miR-275, were also shown to be downregulated in
Plasmodium-infected Anopheles stephensi [18]. miR-275
is indispensable for blood digestion and egg develop-
ment in the mosquito Ae. aegypti [32]. In this study, we
confirmed that miR-275 is also involved in Plasmodium
infection of An. anthropophagus by sequencing and
further Northern blot analysis.

Conclusions

In conclusion, our study provides the significant experi-
mental data on the expression profile of microRNAs in
An. anthropophagus midgut after blood-feeding and
Plasmodium infection. Differentially expressed miRNA
in SE, BF and PI were identified by small RNA sequencing,
and further validated by Northern blot. By comparative
analyzing differentially expression levels of the miRNA in
sugar-feeding, blood-feeding and Plasmodium infection,
we found several significant miRNAs involved in the
interaction of mosquito host and parasite Plasmodium.
Our study provides novel regulated miRNAs information
of An. anthropophagus during blood-feeding and parasite
infection. Elucidation of regulated miRNA functions will
provide strong foundation for better understanding of
the biology of the mosquitoes and mosquito-parasite
interactions.
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