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The site of the bite: Leishmania interaction
with macrophages, neutrophils and the
extracellular matrix in the dermis
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Abstract

Leishmania spp., the causative agents of leishmaniasis, are intracellular parasites, transmitted to humans via the bite of
their sand fly vectors. Once inoculated, the promastigotes are exposed to the dermis, which is composed of
extracellular matrix (ECM), growth factors and its resident cells. Promastigote forms are phagocytosed by macrophages
recruited to the site of the sand fly bite, either directly or after interaction with neutrophils. Since Leishmania is an
intracellular parasite, its interaction with the host ECM has been neglected as well as the immediate steps after the
sand fly bite. However, promastigotes must overcome the obstacles presented by the dermis ECM in order to establish
the infection. Thus, the study of the interaction between Leishmania promastigotes and ECM components as well as
the earliest stages of infection are important steps to understand the establishment of the disease, and could
contribute in the future to new drug developments towards leishmaniasis.
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Background
Leishmaniasis is one of the neglected tropical diseases,
with 350 million people in 98 countries worldwide at risk
of developing one of the many forms of the disease.
This disease is caused by different species of the
genus Leishmania - heteroxenous flagellated protozoa
that mainly infect macrophages of mammalian tissues.
Parasite entry into the dermis of the mammalian host
occurs by innoculation during the bite of the sand fly
vector during a blood meal [1]. Promastigotes are in-
oculated in a pool of blood where they interact with
leukocytes [2, 3]. Thus, most host-Leishmania inter-
action studies have focused on the interaction between
Leishmania promastigotes and their cellular targets (dermal
dendritic cells, neutrophils, and macrophages) [4]. However,
at the earliest step of infection after the sand fly bite - pro-
mastigotes could be deposited into the extracellular matrix

(ECM) of the dermis and the blood. In this event, promasti-
gotes interact with extracellular matrix and basement mem-
brane proteins [5], before infecting their cellular targets [3].
In this review, we focus on some of the advances in
the cell biology of the early stages of the interaction
between Leishmania, the dermis microenvironment,
composed of its ECM and immune cells such as neu-
trophils and macrophages.

Interaction between Leishmania and host
extracellular matrix
The ECM is a complex, tissue specific network of
biomolecules that gives shape and physical attributes to
tissues and also acts as an environmental cue to the cells
surrounding its structure [6, 7]. The composition and
the shape of the ECM leads to distinct cell behavior,
such as survival, differentiation, and proliferation as well
as cell migration and tissue invasion [8, 9]. Collagen I is
the major ECM component of the skin, and fibroblasts are
the cells responsible for its synthesis and organization
[10]. The other important component of the skin ECM is
the basement membrane, composed of laminin and colla-
gen IV, which separates the dermis from the epithelial
layer [11]. During injury, skin structure is damaged,
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leading to the activation of wound healing, which is a mul-
tistep process that requires the action of fibroblasts, im-
mune cells and a myriad of growth factors, cytokines and
matrix components [11, 12].
During a sand fly blood meal significant damage oc-

curs to the structure of skin, leading to rupture of the
dermis and its capillaries, creating a blood “pool” con-
taining ECM components from tissue and blood, and
different cells as well [13, 14]. This wound milieu at the
dermis attracts macrophages, which are the main host
cell type of Leishmania [15] and neutrophils as well [16].
Thus, a synchronized action mediated by promastigotes
towards immune cells and ECM will be required for the
establishment of the infection. Parasites will need to mi-
grate in a very complex extracellular environment before
being internalized by neutrophils or macrophages. Thus,
the direct study of the interaction between Leishmania
promastigotes and ECM components is an important
step to understand the establishment of the infection.
Experimental leishmaniasis models have shown that

collagen I, the major ECM component of the skin [17],
is the predominant ECM component found in early
stage lesions [18]. In vitro studies demonstrated the
ability of promastigotes to attach to and move through
collagen I scaffolds [19]. Attachment to collagen I
occurred in a dose-dependent manner, indicating the
presence of a parasite surface receptor [20]. Further-
more, parasite invasion on collagen I 3D scaffolds led to
collagen remodeling (about 20 % degradation), possibly
mediated by metallo- and cysteine proteinases. Physical
traits of the matrix, such as stiffness, decreased promas-
tigote migration [19]. These observations may indicate
that promastigotes need to secrete proteases to break-
down rigid collagen scaffolds to facilitate migration in
the host before being internalized by a host cell. Interest-
ingly, a collagen “shift” occurs during experimental in-
fection with Leishmania: collagen I observed in early
stages is substituted by collagen III during chronic phase
of the infection [21]. It has been reported that decreased
amounts of collagen III result in scar formation due to
myofibroblast differentiation [22]. In contrast, a higher
content of collagen III during leishmaniasis can induce
the presence of a softer skin matrix, by which parasites
would have an easier path for migration and tissue inva-
sion. Promastigotes also bind to collagen VI, which is
normally secreted by macrophages [23].
Fibronectin (FN), an adhesive glycoprotein found in

the blood and connective tissues [24], is possibly found
in sand fly mosquito bite lesions. An increase in FN
expression in Leishmania-infected tissue has been ob-
served in murine models [18]. Surface proteins from
both promastigotes and amastigotes bind to FN, facilitat-
ing monocyte uptake, since these cells recognize FN
[25]. Gp63 - a surface metalloproteinase - and cysteine

proteases are able to degrade FN. These FN fragments
inhibit macrophage formation of reactive oxygen species,
which are important in clearance of the infection and
also facilitate parasite and macrophage migration [5, 26],
helped also by FN shedding [27]. Gp63, also is a FN-like
molecule [28], which is recognized by macrophage integ-
rin receptors contributing to parasite internalization
[28]. A SYRD tetrapeptide from gp63 mimics the classic
integrin recognition binding site RGDS [29], confirming
its identity of FN-like molecule for this enzyme.
Another major group of ECM components present

in the blood is the plasminogen/plasmin/fibrin system.
Critical for coagulation, the blood clot also provides a
provisional matrix by which neutrophils and macro-
phages migrate to during wound healing processes
[30]. Promastigotes will need to escape from this fi-
brin structure, and at the same time allow target cells
to get closer. Likewise, anti-coagulants found in the
sand fly saliva are very important not only inhibiting
blood coagulation but also counteracting promastigotes
procoagulant activity [31]. The reason for this controlled
balance of anti- and pro- coagulation molecules is still un-
known, but it possibly gives to the dermal clot milieu the
proper mechano-biochemical trigger for parasite cell inva-
sion. It is known that Leishmania can bind to plasmin and
plasminogen [32]. Enolase, a ubiquitous metabolic enzyme
binds to plasminogen as a unique example of a multi-
functional protein [33]. Promastigotes appear to se-
crete enolase in exocytic vesicles, which can help in
immune evasion [34], since these vesicles have been
implicated in parasite-macrophage communication.
Furthermore, plasminogen-associated vesicles can trap
macrophages, potentially allowing parasites to move
further into the dermis.
The basement membrane (BM) is a fundamental

structure in the skin. It separates the epithelium from
the dermis and also surrounds blood capillaries. Sand
fly bites locally disarrange BM structure, and promas-
tigotes are exposed to its components: laminin, colla-
gen IV, nidogen, and perlecan [14, 35]. Laminin is a
family of glycoproteins that together with collagen IV
form the general BM scaffold [36]. Leishmania pro-
mastigotes possess a cell surface 67 kDa laminin-
binding protein (LBP) [37], which is stimulated by
zinc, suggesting a downstream signaling pathway [38].
This LBP appears to be important in Leishmania
pathogenesis, since administration of anti-LBP anti-
bodies reduce infectivity of L. donovani in mouse
models [39]. Matrigel, a reconstituted basement mem-
brane scaffold, has been used as substrate to study
promastigote migration [5]. The role of the metallo-
proteinase gp63 on migration through and degrad-
ation of matrigel, was shown to be specifically related
to collagen IV degradation, but not laminin [5, 40].
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Glycosaminoglycans are also components of mamma-
lian ECM, usually associated with proteins, forming pro-
teoglycans. They are present in the skin and can influence
a variety of events during tissue repair, such as avoiding
water lost, preventing tissue compression and regulating
cell migration and survival [41]. Leishmania promastigotes
bind to heparan sulfate, heparin and hyaluran [23], present
at the dermal epithelial junction and the dermis. A
heparin-binding protein, which mediates parasite – pro-
teoglycan binding has been described and implicated in
parasite virulence and host cell invasion, since Leishmania
parasites were unable to invade cells without heparin on
the surface. Also, parasite pre-treatment with heparin
blocked binding to macrophages [42, 43].
The complexity of the ECM at the site of the sand fly

bite increases when we take in consideration all the previ-
ously mentioned components in a dynamic setting
containing cells. For instance, fibrosis formation mediated
by fibroblasts can be a limiting situation for parasite
propagation in the dermis. Thus, it is of interest to study
cells not infected with Leishmania but present in the der-
mis microenvironment. Despite reports on Leishmania
infection of fibroblasts [44–46], possibly the major issue is
the remodeling of the collagen matrix by fibroblasts, due
to growth factor stimulation coming from macrophages
[12]. Complex macrophage -3D collagen I interaction
system has been described, showing promastigotes migrat-
ing on collagen I scaffolds before being internalized by
macrophages [19]. Furthermore, parasite migration is
faster when macrophages are present [19], possibly indi-
cating that secretion of cytokines can be chemotactic for
Leishmania in complex in vitro invasion models.
The examples commented in this session are a re-

minder of how important the extracellular milieu can be
critical for the pathogenesis of an infection caused by an
intracellular pathogen such as Leishmania. Most of
Leishmania/host cell studies use macrophages and
neutrophils in suspended or 2D cultures, which does not
reflect the complexity of the dermis during early stage
leishmaniasis.

Interaction between Leishmania and neutrophils
Neutrophils are the first cells to migrate to infected sites,
where they release antimicrobial mediators and phago-
cytose microorganisms, and kill infectious agents by
generating a potent oxidative burst and releasing toxic
mediators into the parasitophorous vacuole. The first
studies on Leishmania-neutrophil interaction were pub-
lished in 1981 [47–49], reporting the ability of human
neutrophils to phagocytose and kill L. donovani promas-
tigotes and amastigotes. Following these first reports,
several aspects of the neutrophil-Leishmania interaction
were studied, which were recently reviewed [50–54].

Here, we will address a recently described property of
neutrophils, which is the ability to release their nuclear
DNA associated with granular and cytoplasmic proteins
to the extracellular milieu [55]. These structures, known
as neutrophil extracellular traps (NETs), are released as
a scaffold that ensnares and kills microorganisms. The
NETs release culminates with a cell death process
named NETosis, which is different from apoptosis and
necrosis [56]. More recently, another NET release mech-
anism was described, in which nuclear budding vesicles
carrying chromatin are extruded from neutrophils, re-
leasing their contents in the extracellular milieu, where
chromatin traps and kills pathogens [57]. This mechan-
ism occurs preserving neutrophil viability and, thus, it
was named “vital or early NETosis” to differentiate it
from the classic NETosis associated with neutrophil
death [58]. Therefore, it is important to address the
role of NETosis in leishmaniasis, since the encounter
of Leishmania and neutrophils is an early event when
promastigotes are deposited in a pool of blood
formed at the site of the sand fly bite, where neutro-
phils are abundant [59–65].
Several microorganisms induce NETosis [66] and,

among parasites, L. amazonensis, L. major and L. infan-
tum promastigotes [67] elicit the classical NETosis after
in vitro interaction with human neutrophils. It is known
that the majority of microorganisms induce the classical
NETosis, which is dependent on reactive oxygen species
(ROS) generated by NADPH oxidase, and of chromatin
decondensation mediated by peptidylarginine deiminase
4 (PAD4), elastase and myeloperoxidase [56, 68–70]. It
is only known that early NETosis, on the other hand,
occurs quickly (5–15 min) after inducer-neutrophil
interaction and that it is independent of ROS generation
[57, 58]. Recently, we demonstrated that Leishmania
promastigotes triggered both NETosis mechanisms, the
classic one occurring with redox imbalance, PAD4 and
elastase participation, and the early NETosis occurring in
an elastase-dependent and ROS and PAD4-independent
manner [71].
We have shown that L. amazonensis promastigotes were

caught and killed by NETs in a histone-mediated mechan-
ism [67]. The parasite death was evaluated by cell morph-
ology in scanning electron microscopy and by quantifying
promastigote survival in cultures with neutrophils in
which DNase was added to disrupt NET-DNA mediated
death [67]. Although the mechanism of histone-mediated
cell death is still unknown, histone toxicity has been dem-
onstrated for to promastigotes of L. mexicana, L. brazilien-
sis, L. major and L. amazonensis, but histone resistance
has been reported for amastigotes of L. mexicana and L.
amazonensis [72]. Interestingly, L. donovani promastigotes
induced NET extrusion by human neutrophils, although
they were resistant to NET mediated killing, protected by
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the lipophosphoglycan (LPG) expressed on the promasti-
gote cell surface, since LPG-knockout parasites were sus-
ceptible to the NET-killing mechanism [73]. In contrast to
L. donovani LPG, purified L. amazonensis LPG triggered
NETosis [67], a difference that could be due to the inter-
and intra-specific polymorphisms found in this molecule
of different Leishmania species [74, 75].
More recently, it has been demonstrated that L. mexi-

cana induced NETosis in mice neutrophils in vitro, and
NETs were observed in the ear of mice inoculated with
this same parasite. Interestingly, these NETs did not kill
L. mexicana promastigotes [65].
Properties already assigned to NETs include trapping to

avoid pathogen spreading, phagocytosis assistance through
its trapping activity, and killing of microorganisms. Mi-
crobes have also evolved different strategies to escape NETs
toxic mechanisms. Accordingly, a conserved bacterial tool
to escape NET toxicity is the expression of nucleases, which
efficiently degrade NET-DNA scaffolds, neutralizing their
toxic effects and allowing bacterial spread throughout the
body [76–84]. Interestingly, Leishmania promastigotes
express 3’-nucleotidase/nuclease, a class I nuclease member,
which cleaves NET-DNA, allowing parasites to escape
NET-trapping and -killing [85]. Furthermore, the Lutzo-
myia longipalpis sand fly saliva inoculated into the host
skin together with Leishmania promastigotes, contains the
powerful endonuclease Lutzomyia NET destroying protein
(Lundep), that degrades NET-DNA meshes, allowing para-
sites to escape NET-toxic activity and exacerbates Leish-
mania infection [86]. The evolutionary conservation of
NET induction ability into different Leishmania spp., points
to the possibility that NETosis occurs during parasite trans-
mission to the vertebrate host; however, NETs toxicity
might be counteracted by the activity of promastigote
nucleases, as well as by the presence of endonuclease in the
vector’s saliva. Importantly, not only promastigotes induce
NETosis, since amastigote forms also trigger NETs in vitro
[62], and amastigote nests were found associated with NETs
in lesions of human American tegumentary leishmaniasis
[87]. The study of the Leishmania ability to induce NET
release could advance the understanding of the early
aspects of the innate immunity to this protozoan and of the
pathogenesis of Leishmania infection as well.

Interaction between Leishmania and macrophages
Leishmania promastigotes are rapidly phagocytized by
neutrophils and macrophages after being inoculated by
the sand fly vector. Although Leishmania is mainly
found in neutrophils during the first hours of infection,
the parasites do not differentiate into amastigotes inside
these cells, but in macrophages. Thus, macrophages are
important for the establishment of infection and persist-
ence of the parasite inside the host [64, 88]. In addition,
it has been previously reported that upon phagocytosis

of Leishmania major, mononuclear phagocytes harboring
live parasites migrate from the skin to the draining
lymph node of the host [89–91]. Macrophage migration
is dependent on the interaction of these cells with the
ECM [92], although the mechanisms involved in this
process during Leishmania infection remains unknown.
The capacity of these cells to home to the skin, to mu-
cosae, or to internal organs may also be modulated by
the parasite [93] and can play an important role in the
dissemination of the disease.
Studies using L. mexicana and L. infantum have shown

that molecules like proteophosphoglycans secreted by
these parasites in the sand fly’s midgut and inoculated into
the host during blood meal are powerful stimulators of
macrophage recruitment [94, 95]. During the initial recog-
nition events, different species of Leishmania rely on a
range of macrophage receptors, including complement
receptors (CRs), mannose receptors (MR), fibronectin re-
ceptors and Fcγ receptors (FcγRs), which may later impact
the course of infection [28, 96–101]. Although reports in
the literature have claimed that these routes of parasite
entry are redundant, the ligation of specific receptors
elicits different downstream functions in the macrophage
[28, 96–101]. It was shown that avirulent promastigotes in
logarithmic growth enter parasitophorous vacuoles lined
with CR3 and MR, whereas PVs surrounding density-
purified metacyclics contained only CR3 [102]. CR3, but
not MR, clusters in cholesterol- and caveolin-containing
microdomains, which were previously characterized as
entry routes that direct L. infantum promastigotes into a
pathway that leads to a 24- to 48-h delay in lysosomal
fusion and allows better replication of parasites, leading to
intracellular survival [103].
Once the parasite is recognized by the macrophage,

focal exocytosis of host cell membrane originating from
endosomes, lysosomes and the endoplasmic reticulum
contribute to the formation of the promastigote-
containing phagosomes [104–106]. Such supply of mem-
brane from various intracellular compartments may
contribute to the formation and the composition of the
nascent parasitophorous vacuole. Other factors during
the initial moments of the infection have an important
role in determining the establishment of the disease,
such as the sand fly saliva. Leishmania parasites as well
as sand fly saliva have been associated with suppression
of the initial proinflammatory immune response, pro-
moting parasite survival [107–111]. Co-injection of sal-
iva or its components together with Leishmania were
shown to exacerbate cutaneous leishmaniasis, producing
larger lesions and a higher parasite burden. This
enhancement in Leishmania lesions by saliva was attrib-
uted to the immunomodulatory properties of the salivary
proteins, which act in the initial moments of the infec-
tion, promoting downregulation of macrophage and
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dendritic cell functions and the production of anti-
inflammatory cytokines that favor parasite survival and
establishment [112–116]. It has been shown that the
increase in infectivity was associated with the ability of
the saliva to selectively inhibit pathogen recognition,
nitric oxide (NO) and hydrogen peroxide production
thus, inhibiting the ability of macrophages to kill the
parasites [117, 118]. Furthermore, it was also shown that
Leishmania vector saliva inhibits the production of pro-
tective type 1 cytokines such as IL-12 and IFN-γ, while
enhancing the production of IL-10, IL-4, IL-6 and pros-
taglandin E (PGE)2, all of which enhance parasite
survival [108, 119, 120].
After the inoculation and initial infection, Leishmania

parasites may remain at the inoculation site or dissemin-
ate in the host tissues. Although the mechanisms that
control Leishmania dissemination through different host
tissues are poorly understood, the initial events that
occur at the site of infection have an important role in
this process. Evidence suggests that Leishmania infection
and the parasite burden modulate the adhesion and mi-
gratory capability of mononuclear phagocytes [121, 122].
Carvalhal and coworkers [121] demonstrated that infec-
tion with different Leishmania species impairs the
adherence of monocytes and macrophages to connective
tissue. Such impairment in leukocyte adhesion is due to
interference with integrin function, as the authors dem-
onstrated a regulation in cell surface β1-integrin activity
in infected macrophages [123]. Furthermore, infection
with Leishmania downregulates the expression of the
genes encoding the chemokine receptors CCR4 and
CCR5 in murine dendritic cells. The impairment of che-
mokine production can be related to reduced migration
of phagocytes from the parasite inoculation site and
could interfere with the development of a systemic/adap-
tive response [121, 122]. In addition, it has been shown re-
cently that leukocyte spreading over a fibronectin-coated
surface is abrogated in Leishmania-infected cells [124].
These changes in the initial moments of the infection and
in phagocyte function may be important for parasite dis-
semination and distribution of lesions in leishmaniasis.

Conclusions
Although long viewed only as a supportive structure, the
ECM is an essential part of the cell’s milieu that regulates
almost all cellular behavior [125], including inflammatory
signaling [126]. In leishmaniasis, once Leishmania para-
sites are inoculated in the host’s skin, they will need to mi-
grate in a very complex extracellular environment before
being internalized by neutrophils and/or macrophages,
which are also responding to a complex wound tissue
microenvironment.
Challenges remain in understanding leishmanial biol-

ogy and how this parasite interacts with the host tissue.

However, in the last few years, it seems clear that the
initial interaction between Leishmania parasites and the
host extracellular matrix and immune cells, such as neu-
trophils and macrophages, has an important role on the
determination of Leishmania infection outcome. Pro-
mastigote ECM migration, fibroblast wound response,
macrophage migration, and NET formation can be
critical emergent topics for the full understanding of
Leishmania pathogenesis.
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