
SHORT REPORT Open Access

No evidence for the involvement of the
argasid tick Ornithodoros faini in the
enzootic maintenance of marburgvirus
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Abstract

Background: The cave-dwelling Egyptian rousette bat (ERB; Rousettus aegyptiacus) was recently identified as a
natural reservoir host of marburgviruses. However, the mechanisms of transmission for the enzootic maintenance of
marburgviruses within ERBs are unclear. Previous ecological investigations of large ERB colonies inhabiting Python
Cave and Kitaka Mine, Uganda revealed that argasid ticks (Ornithodoros faini) are hematophagous ectoparasites of
ERBs. Yet, their potential role as transmission vectors for marburgvirus has not been sufficiently assessed.

Findings: In the present study, 3,125 O. faini were collected during April 2013 from the rock crevices of Python
Cave, Uganda. None of the ticks tested positive for marburgvirus-specific RNA by Q-RT-PCR. The probability of
failure to detect marburgvirus at a conservative prevalence of 0.1 % was 0.05.

Conclusions: The absence of marburgvirus RNA in O. faini suggests they do not play a significant role in the
transmission and enzootic maintenance of marburgvirus within their natural reservoir host.
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Findings
Introduction
The genus Marburgvirus (Filoviridae), includes a single
species, Marburg marburgvirus, with two virus members,
Marburg virus (MARV) and Ravn virus (RAVV) (hereafter
collectively referred to as marburgvirus). These viruses
cause outbreaks of hemorrhagic disease perpetuated by
human-to-human transmission, with reported case fatality
ratios up to 90 %. Ecological investigations have identified
the cave-dwelling Egyptian rousette bat (ERB; Rousettus
aegyptiacus) as a natural reservoir host for marburgvirus
[1, 2], based upon the detection of marburgvirus RNA and

IgG antibodies [3, 4] and the isolation of infectious mar-
burgvirus [1–3, 5] from ERBs inhabiting caves associated
with recent human outbreaks. Experimental infection of
captive ERBs with MARV has confirmed their natural res-
ervoir host status by demonstrating MARV replication in
a range of tissues [6–8] and oral shedding of infectious
virus in the absence of clinical disease [7, 8] followed by
seroconversion [6–8]. Although it has been hypothesized
that MARV is transmitted between ERBs by direct contact
with infectious MARV oral secretions through activities
such as touching, licking and biting [7], a recent study was
unable to show horizontal transmission within a 42 day
period from MARV-experimentally infected ERBs to sus-
ceptible in-contact ERBs [9]. It has been suggested that
enzootic transmission and maintenance of marburgvirus
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within the ERB population may involve an intermediate
host, such as an arthropod vector [1, 7–9].
Argasid ticks (Ornithodoros faini; = Carios faini, Alec-

torobius faini) have been observed on the bodies of ERBs
inhabiting a cave in Kruger National Park, South Africa
[10] and previous ecological investigations of large ERB
colonies inhabiting Python Cave and Kitaka Mine,
Uganda revealed that O. faini are hematophagous ecto-
parasites of ERBs [1, 2]. Ornithodoros spp. ticks are
known vectors of several arboviruses including African
swine fever [11], bluetongue [12], Karshi [13], Langat
[13, 14] and Qalyub [15] viruses. A previous collection
of approximately 300 adult and nymphal argasid ticks
taken from rock crevices near ERB roosting sites at Py-
thon Cave and Kitaka Mine were negative for marburg-
virus RNA by Q-RT-PCR [1, 2]. However, given the
limited sample size, further collection and testing of
these arthropods was considered important to determine
whether they play a role in the enzootic transmission
and maintenance of marburgvirus.

Methods
A total of 3,125 adult and nymph argasid ticks were in-
dividually collected using forceps from small rock crev-
ices near bat roosting sites within Python Cave, Queen
Elizabeth National Park, Uganda in April 2013. The tick
collections were undertaken with the approval of the
Uganda Wildlife Authority and performed in accordance
with a protocol approved by the Centers for Disease
Control and Prevention’s Institutional Animal Care and
Use Committee. The cave is inhabited by a sole chirop-
teran population consisting of approximately 40,000 ERB
individuals with a consistent 2.5 % prevalence of active
marburgvirus infection [2]. Between 2007 and 2008, two
epidemiologically unrelated cases of Marburg
hemorrhagic fever occurred in tourists 7–10 days after
visiting Python Cave [16, 17].
Pools of five ticks were placed directly in 2-mL grind-

ing vials (OPS Diagnostics, Lebanon, NJ) containing
250 μL of a 1:1 ratio of MagMax Lysis Binding Solution
(Life Technologies, Grand Island, NY) to isopropanol
(MagMax Lysis Binding buffer). The tick pools were ho-
mogenized for 2 min at 1,500 strokes per minute using
the GenoGrinder 2000 (OPS Diagnostics, Lebanon, NJ).
After the addition of 550 μL of MagMax Lysis buffer, the
pools were transferred to cryovials and immediately
stored under liquid nitrogen vapors. Nucleic acid was
extracted using the MagMax Pathogen RNA/DNA Kit
(Life Technologies, Grand Island, NY) on the MagMax
Express-96 Deep Well Magnetic Particle Processor (Life
Technologies, Grand Island, NY). All samples were ana-
lyzed by quantitative-reverse transcriptase-polymerase
chain reaction (Q-RT-PCR) on the 7500 Real-Time PCR
System (Life Technologies, Grand Island, NY) using the

SuperScript III Platinum One-Step Q-RT-PCR Kit (Life
Technologies, Grand Island, NY) with marburgvirus-
specific primers and probes targeting the viral protein
40 gene [2], as well as with tick-specific primer and
probes targeting the mitochondrial 16 s ribosomal RNA
(rRNA) gene (endogenous control to confirm nucleic
acid integrity).
A short region (~450 bp) of the 16 s rRNA gene of

three samples was amplified using the SuperScript III
One-Step RT-PCR System with the Platinum Taq High
Fidelity DNA Polymerase Kit (Life Technologies, Grand
Island, NY) and then sequenced using the Big Dye Ter-
minator v3.1 Cycle Sequencing Kit (Life Technologies,
Grand Island, NY) and six primers on the ABI Prism
3100 Genetic Analyzer (Life Technologies, Grand Island,
NY). These sequences [GenBank: KU295468-
KU295470], as well as morphological examination of a
set of ticks preserved in 70 % ethanol, were used to con-
firm the O. faini species designation.

Results and discussion
None of the tick pools (0/625) were positive for
marburgvirus-specific RNA, while 95.7 % (598/625) of
the pools were positive for tick-specific 16srRNA (4.3 %
of the pools were 16 s rRNA negative indicating the
presence of nucleic acid inhibitors in these samples).
The probability of failure to detect marburgvirus RNA
in this sample size of 2,990 ticks (598 pools of 5) at a
conservative prevalence of 0.1 % was 0.05.
Adult Ornithodoros spp. feed and reproduce repeat-

edly, [18] and survive up to 20 years [19]. Further, these
ticks have been shown to harbor infectious African
swine fever virus for more than five years [20], transmit
Langat virus more than three years after oral exposure
[13] and transmit Karshi virus nearly eight years follow-
ing oral exposure [21]. The natural history of Ornitho-
doros spp. suggests that if O. faini was a vector for
marburgvirus then its presence would have been de-
tected in our tick collection. However, an experimental
infection study showed that ERBs inoculated with a large
dose of MARV (4 log10TCID50) exhibited relatively low
peak viremias (3.3 log10TCID50 genome equivalents/mL)
of short duration (3 days) [7]. Furthermore, an ecological
investigation revealed that only 5 % of wild-caught ERBs
shown to be actively infected with marburgvirus had de-
tectable viremias [2]. Together these data suggest that
marburgvirus-infected ERBs may not produce suffi-
ciently high viremias for feeding O. faini to acquire the
virus. Similarly, the low viremias would make mechan-
ical transmission unlikely. It is also possible that either
the midgut epithelial or salivary gland cells of O. faini
are refractory to marburgvirus infection or replication. A
previous laboratory study found that Ornithodoros spp.
ticks intrathoracically inoculated with Reston virus
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(Family Filoviridae), to bypass the midgut barrier,
showed no evidence of virus replication [22].
In conclusion, this study found no evidence for O.

faini playing a significant role in the enzootic transmis-
sion and maintenance of marburgvirus.
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