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Abstract

Background: Understanding wildlife disease ecology is becoming an urgent need due to the continuous
emergence and spread of several wildlife zoonotic diseases. West Nile Virus (WNV) is the most widespread
arthropod-borne virus in the world, and in recent decades there has been an increase both in geographic range,
and in the frequency of symptomatic infections in humans and wildlife. The principal vector for WNV in Europe

is the common house Culex pipiens mosquito, which feeds on a wide variety of vertebrate host species. Variation
in mosquito feeding preference has been described as one of the most influential parameters driving intensity
and timing of WNV infection in the United States, but feeding preferences for this species have been little studied
in Europe.

Methods: Here, we estimated feeding preference for wild Cx. pipiens in northern Italy, using molecular analysis to
identify the origin of blood meals, and avian census to control host abundance variations. Additionally, we used
host bird odour extracts to test experimentally mosquito preferences in the absence of environmental variations.

Results: For the first time, we demonstrate a clear feeding preference for the common blackbird (Turdus merula),
both for wild collected specimens and in the lab, suggesting a potential important role for this species in the WNV
epidemiology in Europe. A seasonal decrease in abundance of blackbirds is associated with increased feeding on
Eurasian magpies (Pica pica), and this may be linked to seasonal emergence of WNV in humans. Feeding
preferences on blackbirds are more marked in rural areas, while preference for magpies is higher in peridomestic
areas. Other species, such as the house sparrow (Passer domesticus) appear to be selected by mosquitoes
opportunistically in relation to its abundance.

Conclusions: Our findings provide new insights into the ecology of Cx. pipiens in Europe and may give useful indications
in terms of implementing targeted WNV surveillance plans. However, a clearer understanding of spatio-temporal variations
of Cx. pipiens feeding preferences, and targeted studies on reservoir competence for WNV for these species are therefore
now urgently needed as this is essential to describe disease dynamics and quantify virus transmission risk.
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Background

Zoonoses are infections that can be transmitted from ver-
tebrate animals to humans. Approximately 60% of emer-
ging infectious diseases in humans, and almost all recent
pandemic threats, have had a zoonotic origin [1]. The
huge economic and social burden of zoonotic disease
drives a pressing need to better understand wildlife disease
ecology, in order to describe disease dynamics and quan-
tify hazard, thereby enabling targeted surveillance and
providing support for sustainable disease control.

In the case of vector-borne zoonoses, such as arbovi-
ruses (arthropod-borne viruses), spill-over events are the
result of complex ecological interactions affecting patho-
gens, vectors, and their hosts [2]. Transmission intensity
is determined by both ‘reservoir competence, defined as
the relative ability of a reservoir host species to maintain
and transmit the pathogen to a competent vector, and
contact rates between hosts and vectors [3]. Variables
such as climate, habitat structure, and the relative abun-
dance and behaviour of vectors and hosts all contribute
to the complexity that characterises the dynamics of
transmission of vector-borne pathogens [4-7].

Mosquitoes are among the most important vectors,
and transmit some of the most threatening infectious
diseases in the world, such as malaria, dengue fever, Rift
Valley fever, and West Nile virus (WNYV) [8,9]. Current
understanding of mosquito-borne pathogen transmission
is underpinned by the simple theoretical framework de-
veloped by Ross [10] and Macdonald [11], providing
testable predictions on which control decisions can be
based [12,13]. A central assumption of most models
founded on this framework is that transmission occurs
homogenously in well mixed populations, an assumption
that has, however, been called into question at a range of
spatial scales [13].

Species-specific variation in both contact rates and in-
fectiousness drives considerable heterogeneity in patho-
gen transmission [14]. Some mosquito species are
generalist and express opportunistic feeding behaviour,
while others are specialists and feed preferentially on se-
lected hosts [15,16]. Host feeding preferences vary
among mosquito species and populations, and are af-
fected by factors including season, mosquito nutritional
status, host behaviour or mosquito learning over time
[17-22]. Studies of mosquito feeding preference are
essential to understand the ecology of arbovirus trans-
mission. In fact, at a population level, such feeding pref-
erences may enhance or reduce transmission if vectors
feed on competent or incompetent hosts, respectively
[23]. In order to distinguish between opportunistic and
specialized feeding behaviours, blood meal analysis alone
is insufficient, as it fails to take into account differences
in host availability and behaviour [19]. Recognising this,
Hassan et al. [24] proposed a ‘feeding preference index;
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which examines the number of blood meals from a given
host species as a fraction of blood meals from all identi-
fied hosts, and compares them with the proportional
abundance of that species in the host community. By
combining this information with choice experiments in
the laboratory, it is possible to test mosquito preferences
in the absence of confounding factors [25].

West Nile Virus is a multi-host pathogen of the genus
Flavivirus belonging to the Japanese encephalitis sero-
complex. Reported for the first time in Uganda in 1937
[26], it is now considered the most widespread arbovirus
in the world [2]. Maintained in a bird-mosquito trans-
mission cycle, WNV can affect a wide range of verte-
brates including humans and horses, the last two acting
epidemiologically as ‘dead-end’ hosts that are susceptible
to infection but do not transmit the virus [17]. Recent
analyses of vector feeding preferences in the New World
have greatly enhanced the understanding of WNV trans-
mission dynamics (e.g. [17,24]). Models suggest that
feeding preference is among the most influential param-
eters driving intensity and timing of peak WNV infec-
tion in mosquito vectors, and is essential for modelling
transmission dynamics and predicting outbreaks [3].
Combining analysis of host preference, abundance, host
behaviour and reservoir competence, Kilpatrick et al.
elegantly demonstrated that the American robin (Turdus
migratorius) acted as an unexpected ‘super-spreader’ of
the WNV in North America [14,22].

Despite a much longer history of virus circulation in
the Old World [27], a detailed understanding of virus
ecology and vector-host interactions is still lacking in
Europe. Currently, a number of field studies have identi-
fied mosquito hosts using blood-meal analysis (e.g. in
Czech Republic [28]; Spain [29]; Italy [30]; Portugal [31];
and Israel [32]). However, to our knowledge, there has
been no assessment of host preference in Europe either
by integrating blood meal analyses with host availability
in the field, or by choice experiments in the laboratory.

The current study aimed to quantify feeding prefer-
ences of the common house mosquito Cx. pipiens, con-
sidered the principal vector of West Nile virus in Europe
[33], within a hot spot of WNYV circulation in northern
Italy [34,35]. Using two complementary approaches we
first identified the feeding preference of Cx. pipiens in
nature by combining analysis of blood meal origin with
assessment of host availability, and we analysed seasonal
and spatial variation in host preference. Second, we ana-
lysed intrinsic preferences in the absence of confounding
variables (environmental variations, host abundance and
behaviour) by testing the relative attractiveness of odour
extracts from wild birds for a laboratory colony of Cx.
pipiens. Together, these data help to elucidate the rela-
tive importance of specific bird species to the epidemi-
ology of WNV in Europe.
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Methods

Mosquito feeding preference indices in the field

Mosquito collection

Mosquitoes were collected in Veneto region (north-east-
ern Italy), where WNYV has been detected in the mos-
quito species Cx. pipiens, in animals and humans since
2008 [35-37]. Mosquito traps were located in ten local-
ities within Veneto, a region characterized by mild
climate, intensive agriculture and animal husbandry,
medium-small urban settlements, irrigated areas, wet-
lands and marshes, with abundant mosquito and bird
populations. Ten mosquito sampling localities were se-
lected where one trap was positioned in a rural environ-
ment and the other one in a peridomestic environment
(Figure 1). Data on WNV occurrence in mosquitoes
at each locality was obtained from a regional surveillance
program [38] with three of the sampling localities (6
traps) recorded as WNV positive and the other seven
(14 traps) as WNV negative (Figure 1). Mosquitoes were
collected from May to October 2012, using BG-sentinel
traps baited with BG-lure attractant (Biogents AG,
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Regensurg, Germany). Once a week, each trap was set in
the morning and checked after 24 hours. Every two
weeks the traps were additionally baited with dry ice as
a source of carbon dioxide. Captured mosquitoes were
stored at -80°C and identified to species using morpho-
logical keys for Italian Culicidae [39]. Blood fed females
were stored individually at -80°C, in centrifuge tubes
with 1 ml of ethyl alcohol 70% until analysis.

DNA extraction and identification of mosquito blood meal

The abdomen of each mosquito female with a recent
blood meal was separated from the head-thorax in a
sterile Petri dish, using sterile tips. The DNA contained
in each abdomen was isolated using the DNeasy Blood
and Tissue® kit (QIAGEN, Hilden, Germany) following
company specifications (see [40]). We used a nested-
PCR protocol that selectively amplifies 758 bp of the
vertebrate mitochondrial Cytochrome ¢ Oxidase Subunit I
(COI) gene to identify blood meal origin [41]. Negative
controls (solutions prepared in an identical manner,
with no mosquito extract) were included in each PCR
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reaction plate. After sequencing of the amplified COI
fragment, we used the identification engine implemented
in the Barcode of Life Data (BOLD) Systems database
(http://www.barcodinglife.org/) to assign COI sequences
to particular species.

Census of wild birds and mammals
To quantify availability of vertebrate hosts in relation to
mosquito feeding preferences, we carried out a survey
once a month, within 5 days from each trapping period.
Bird counts were obtained using both sightings and
calls. Counts started at sunrise, and carried out for 6
minutes at each of twenty locations, these being at
the mosquito trap site and at 4 points 200 meters from
the trap site in each cardinal direction. For each obser-
vation (visual and auditory) species and number of indi-
viduals were recorded. Where additional species were
observed outside count periods, records were added to
species lists.

Calculation of feeding preferences

Data on avian host abundance and mosquito feeding
were used to compute feeding preference indices (P;) of
Cx. pipiens mosquitoes, defined as:

p=ti (1)

where f; represents the fraction of total blood meals
taken by Cx. pipiens from host i and a; represents the
density of species i divided by the total density of the
avian community [24]. Where P;=1, the fraction of
blood meals from species i is directly proportional to
host species abundance, and can therefore be said to
represent “opportunistic” feeding habits. Where P; <1,
the species is under-represented in blood meals in re-
spect to host abundance, and is therefore considered
“avoided”. Conversely, where P;> 1, the species is con-
sidered “preferred”. Several species present in the avian
host community were not detected in blood meal sam-
ples. For those species it was necessary to determine
whether this absence was due to avoidance, or to insuffi-
cient sample size. For those species, we assigned a value
fi = (1-0.5"") which represents half the probability of not
observing any blood meals from this species given the
total blood meal sample size, n. Then, for species that
were not detected in mosquito blood meals, we assumed
a conservative estimate P;=fy/a; if the species was
significantly avoided or P;=1 if not. To predict the dis-
tribution of expected blood meals based on a null hy-
pothesis of opportunistic feeding, we performed 10,000
multinomial simulations based on census data (after
[14]). Following Hassan et al. approach [24], we esti-
mated for each host species the probability of observing

Page 4 of 13

a larger [or smaller] than unity feeding preference index
by computing the fraction of the 10,000 simulations in
which P; was higher [or lower] than 1.

In order to compare the pattern of mosquitoes feeding
habits in peridomestic and rural sites, we computed two
different feeding preference indices as in (1) using blood
meals and avian census data obtained with traps in peri-
domestic, P;peridomesticc and rural, Pj,,..; localities, re-
spectively. To test the significance of these differences,
we used multinomial simulations where samples of
blood meals and host species abundances in each simu-
lation were extractions from multinomial distributions
with probabilities f; yeridomestic and @; peridomestic in perido-
mestic sites and f; . and a; 4 in rural sites, respect-
ively. (Where f; seridomestic [firurall Tepresents the fraction
of total blood meals taken by Cx. pipiens from host i in
peridomestic [rural] sites and a; peridomestic (@i rural repre-
sents the density of species i over the total density of the
avian community estimated in peridomestic [rural] sites.)
For each host species we estimated the probability of ob-
serving a larger [or smaller] feeding preference index in
peridomestic than in rural sites by computing the fraction
of the 10,000 simulations where the difference in feeding
preferences indices, P; peridomestic = Piruran Was positive [or
negative].

Similarly, in order to investigate the seasonal patterns
of mosquito feeding habits, we computed two different
feeding preference indexes as in (1) by using blood meals
and avian census data obtained in the early (May-June,
P; car1y) and the late (July-September, P; ;,.) mosquito ac-
tivity season. These two periods were selected in order
to test whether mosquito feeding habits are affected by
the seasonal changes in the behaviour of some avian
species. For instance, frugivorous birds, such as the
common blackbird (Turdus merula, hereafter, black-
bird), at the end of its breeding season (in July), moves
from nesting areas to sites rich in fruit bearing plants
[42,43]. Other species, such as barn swallow (Hirundo
rustica), after the breeding season move for gregarious
foraging or start migrating [44]. These behavioural
changes modify the composition of the avian host com-
munity and are therefore likely to affect the feeding pat-
terns of Cx. pipiens.

Finally, we used the same method to compare feeding
preference indices between sites where WNV occur-
rence in mosquitoes has, or has not, been observed
(Piwnvse, or Piwny., respectively) during 2010-2012
[38]. Simulations were performed using MATLAB
7.10.0 (The Mathworks, Inc.).

Mosquito feeding preferences in the laboratory

Collection of test subjects

Four wild bird species were selected based on the out-
come of field census and preference analyses: blackbird
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and magpie, both abundant and preferred in the field;
house sparrow, abundant and fed on opportunistically,
and Eurasian blackcap (Sylvia atricapilla), neither abun-
dant nor preferred but displaying feeding and breeding
habits similar to blackbird. All test subjects were captured
using mist-nets during spring and summer 2013. Captures
were carried out by an ornithologist authorized by the
National Institute for Environmental Protection and
Research ISPRA and the research protocol was approved
by Local Wildlife Management and Veterinary Welfare
Committees. Since both sex and age might influence the
composition of odour bouquet emitted by birds [45-47],
only adult males were considered in the experiments. Four
males of each species were captured.

Mosquitoes used in the experiments derived from eggs
laid by gravid insects captured in the field and reared in
the laboratory at the National Institute of Health in
Rome. Only adult female mosquitoes were employed in
behavioural bioassays.

Collection of odour extracts

Differences in odour composition have previously been
shown to be significant in determining host preference
in mosquitoes [25], and odour extracts have been used
to test mosquito host preference [45-47]. Odour extracts
were used rather than live birds in the current study in
order to minimise animal welfare issues.

Once in the laboratory, each bird was placed in an air-
tight polypropylene desiccator (Carlo Erba Reagents
S.p-A., Milan, Italy) of 240 mm (for blackbirds and mag-
pies) or 140 mm diameter (house sparrows and black-
caps), according to the size of the bird. Charcoal-filtered
air was pumped through the system at 150 ml/min and
over a Porapak Q cartridge that contained 50 mg of ad-
sorbent, for one hour for each animal [48]. The birds
were then immediately released at the site of capture.
Volatiles were desorbed by eluting the cartridge with
600 pl of redistilled hexane. The extracts were stored at
-20°C until used. To avoid cross contamination, the
polypropylene desiccator was cleaned with denatured al-
cohol between each use.

Behavioural trials
All trials were conducted in August and September 2013
during the physiological peak of host-seeking activity of
Cx. pipiens (about 2 hours after sunset) [49] in a room with
infrared light to mimic the physiological crepuscular-
nocturnal activity of this species [50,51]. A plastic Petri-
dish (diameter 25 cm, height 4 cm) was used as the test
arena, and was placed centrally in a white, uniformly illumi-
nated box (50 cm x 30 ¢cm, 100 lux), to prevent distraction
by surrounding objects.

The bottom of the dish was covered with a filter paper
disk. Two additional pieces of filter paper (1 cm?) were
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placed on top of this paper, on opposite sides of the Petri
dish: one was soaked with 40 pl of odour extract from
the selected bird species, while the other was soaked
with 40 ul of hexane, thus acting as control. The test
arena was demarcated into three equally sized sectors:
one lateral sector including the odour extract, a 5 cm
wide central strip, and one lateral sector including the
control. For each bird species, the test was repeated
using extracts from four different adult male individuals.

Using a manual aspirator, insects were taken from
their cages, inserted individually through a central hole
in the lid of the Petri dish and observed for 7 min. The
number of observed mosquitoes varied among tests
ranging from 60 to 80 individuals (specifically: 60 black-
birds, 60 magpies, 60 house sparrows, and 80 Eurasian
blackcaps). The time spent in each of the sectors was
recorded. Insects that settled for at least 70% of the test
duration in one of the lateral sectors were scored as
having a preference. Individuals that spent less than
70% of the time in either lateral sector, or remained in
the central sector, were counted as exhibiting no
preference.

For each test, the positions of the disks of filter paper
were randomly rotated to avoid any positional effect. In
addition, preliminary analyses were carried out to test
for positional bias, by conducting trials first with both
filter papers soaked with hexane, and then both with
odour extract (in this case, from 7. merula), in each case
with 30 mosquitoes. For all the tests individual insects
were used only once to avoid bias from previous exposure.

Calculation of odour preference

For each host species, the number of individuals that
chose the sector with the odour source was compared
with those choosing the control (hexane). Individuals
exhibiting no preference were excluded. A chi-square
test was used to compare the number of mosquitoes that
chose the odour source versus those that chose the con-
trol sector within each test extract bioassay. Differences
between bird extracts were evaluated by contingency
table analysis based on chi-square followed by a Ryan’s
multiple comparison test on proportions (p < 0.05) [52].
Both chi-square tests were Yates corrected.

Results

Bird census

Censuses showed a total of 31 wild avian species, including
over two thousand individuals. Eight species dominated the
bird community, representing more than 90% of the total
number of individuals (Figure 2). They were (from the most
to the least abundant) barn swallow, Eurasian collared dove
(Steptopelia decaocto), common starling (Sturnus vulgaris),
house sparrow, rock dove (Columba livia), blackbird,
common house martin (Delichon urbicum) and magpie.
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Figure 2 Avian abundance and blood meal origins. Relative abundance of birds (g;) and percentage of Cx. pipiens blood meals from bird
species (f;) at site traps in Veneto.

Mosquito collection and feeding preference indices in

the field

We collected 259 blood-fed females in total, identified as
Cx. pipiens (206), Anopheles maculipennis complex (39),
Aedes albopictus (12) and Ochlerotatus caspius (2). We
computed feeding preference indices only for Cx. pipiens as
sample sizes for other mosquito species were insufficient.

A total of 188 hosts of 31 different species were identi-
fied from Cx. pipiens blood meals. Of these, 144 (77%)
were avian of which 117 (62%) were wild birds and 27
(14%) domestic. The remaining 43 (22.9%) were mammals,
of which 13 (6.9%) were humans, and one (0.5%) reptile.

Four species (blackbird, Eurasian collared dove, house
sparrow, and magpie) were the origin of 81% (95/117) of
blood meals coming from wild avian species (Figure 2).
The other 22 blood meals came from 14 wild bird spe-
cies. Analyses of feeding preference indices of the eight
most abundant bird species, derived from z =117 blood
meal samples, indicate that blackbird and magpie were
significantly preferred by Cx. pipiens while collared dove
was marginally preferred (Ppcrpira = 825, p <0.001;
Pmagpie =3.54, p<0.001; Pcollaredidove =136, p= 0.056).
Rock dove and common starling were significantly
avoided  (Prock dove=0.34, p<0.01;  Pyaping = 0.089,
p <0.001). Despite their high abundance, neither com-
mon house martin nor barn swallow were detected in
blood meals, suggesting that these species were signifi-
CantlY avoided (Phouseimartin =0.14, p< 0.05; Pbarnfswallow =
0.019, p < 0.001). Finally, Cx. pipiens fed on house sparrow
in proportion to its abundance (Ppouse sparrow =1.01,
p > 0.05). Sample size constraints prevented calculation of
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Figure 4 Spatial variation of mosquito feeding preferences
between peridomestic and rural sites. Feeding preference
indexes (P) of Cx. pipiens mosquitoes of the most notable bird
species in Veneto region in peridomestic and rural sites. Asterisks
indicate statistical differences between areas (*: p < 0.05).

feeding preference indices for the other less abundant wild
bird species. Domestic species were excluded as census
data were unrepresentative of abundance; also, despite
their relatively high occurrence in blood meals (e.g. do-
mestic chicken were identified in 21 cases, 14.5% of avian
species) their role in circulation of WNV is unimportant
as they are not deemed competent hosts.

For the four non-avoided species for which a sufficiently
large sample size was available (see Figures 2 and 3), we
were able to compute feeding preferences distinctly in
peridomestic vs. rural areas, in different seasons, or in
areas with or without recorded WNYV circulation.

Preference for blackbird was expressed more strongly in
rural than in peridomestic areas while preference for mag-
pie exhibited the opposite pattern; for collared dove and
house sparrow, no significant differences were observed

(Figure 4 Myar = 53, Nperidomestic = 64, Phlackbird.ruml =

-10 -

Early season |
Late season
Early season
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Early season
Late season

Figure 5 Temporal variation of mosquito feeding preferences
during mosquito activity season. Feeding preference indices (P) of
Cx. pipiens mosquitoes of the most notable bird species in Veneto region
in early season (May-June period) and late season (July-September
period). Columns with hash key (#) are conservative estimates (see text).

Asterisks indicate statistical differences between periods (***: p < 0.001).

10.97, Pblackbird.peridomestic =6.01, p< 0.05; Pmagpie.rural =
141, Piuagpicperidomestic = 7-65, P <0.05). Preferences for
blackbird and magpie were observed more strongly in
the late than during the early part of the season, while
preferences for collared dove and house sparrow were
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Figure 6 Temporal variation of avian abundance and blood meal origins during mosquito activity season. Percent of avian abundance
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period; late season: July-September period. Columns with hash key (#) are conservative estimates (see text). Asterisks indicate statistical differences
between periods (> p < 0.1, *: p < 0.05; ***: p < 0.001).

not significantly different between the two periods
(Figure 5: Nearly = 33, Niate = 84, Pblackhird.late =25.58,
P, blackbird.early = 4.60, p <0.001; P, magpie.late = 725, P, magpie.early = 1,
p <0.001).

Figure 6 shows separately the seasonal change between
the early and late periods for avian relative abundance
(panel a) and for the proportion of blood meals (panel b).
The increase in preference index for blackbird and magpie
arose from differing causes: for blackbird, abundance was
significantly less in the late season but was not accompanied
by a decrease in the frequency of blood meals on this
species; while for magpie, the abundance remained
stable but the proportion of blood meals was greater in
the late season.

During the latter part of the season, we also observed
an increase in the number of Cx. pipiens bites on
humans, from 2 bites (3.6% of the total blood meals) in
the early season to 11 bites (8.3%) later in the season.
However, sample size for bites on humans was too small,
and this increase was not statistically significant.

A significant preference was observed for house spar-
row within sites positive for WNV (WNV+) while no
preference was detected for this species in areas negative
for WNV circulation (WNV-) (Figure 7: nwayy =39,
nwNv- = 78 P house_sparrow. WNV+ = 4.04, P house_sparrow. WNV- =
0.58, p <0.01). Preference for magpie was significantly
higher in WNV+ areas, while the preference for black-
bird was marginally higher, and feeding preference for
collared dove exhibited no significant difference be-
tween WNV+ and WNV- sites (Pgpie wnvs = 6.52,
Pagpiewny-=1.41, p <0.01;
Pyiackpira.wnv- = 6.97, p = 0.059).

Pyjacivira. wnve = 14.91,

Mosquito feeding preferences in the laboratory

Odour extract solutions collected from all four bird spe-
cies were attractive to Cx. pipiens in respect to the con-
trol (house sparrow: chi-square =4.16, df=1, p<0.05;
Eurasian blackcap: chi-square=7.15, df=1, p<0.01;
blackbird: chi-square =28.88, df=1, p<0.001; magpie:
chi-square = 4.33, df =1, p <0.05) (Table 1). Comparisons
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Figure 7 Spatial variation of mosquito feeding preferences
between WNV positive and WNV negative sites. Differences in
feeding preference indexes (P;) of Cx. pipiens mosquitoes of the
notable non-avoided bird species in sites where West Nile virus
(WNV) circulation in mosquitoes has been observed, WNV+, or
not, WNV-, in Veneto region in the 2010-2012 time span. Asterisks
indicate statistical differences between periods (*: p <0.1; *:
p < 0.05; **: p < 0.01).
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among species indicated that blackbird extracts were
significantly more attractive than extracts from all other
species (chi-square =23.6, df=3, p<0.001; Ryan’s test,
p <0.05) (Table 1). Extracts from the other 3 species did
not differ from each other in attractiveness (Ryan’s test,
p <0.05) (Table 1). The preliminary trial using paired hex-
ane/paired odour extract excluded the possibility of
positional bias (hexane: chi-square = 0.043, df=1, p =0.83;
blackbird extract: chi-square = 0.07, df = 1, p = 0.79).

Discussion

Our field study showed that bird species were not bitten
by mosquitoes in proportion to their abundance. This
supports the conclusion that the overall abundance of
avian species is likely to be a poor indicator of import-
ance in disease transmission, as has been demonstrated
in the US [14,18,24]. We identified four bird species, the
blackbird, the house sparrow, the magpie and the col-
lared dove as the species most frequently bitten by Cx.
pipiens. This result confirms previous studies on blood
meal analysis conducted in European countries showing
that Cx. pipiens fed most frequently on birds belonging
to order Passeriformes [28]. Other European studies
have reported both the house sparrow [29-31] and black-
bird [30,31] as the most frequently occurring species in
Cx. pipiens blood meals. Here, we found in addition that
collared dove and magpie were abundant in mosquito
blood meals, but that only blackbird and magpie were
significantly preferred, while house sparrow and collared
dove were fed upon opportunistically.

Previous studies have shown that the degree of blood
meal digestion status of fed mosquitoes can alter the host
composition identified in blood meal analysis [19,53]. How-
ever, in [19,53] mosquito sampling procedures were differ-
ent in respect to our study; in particular, we used BG traps
to collect engorged mosquitoes, while in [19,53] Thiemann
et al. used CO,-CDC traps and gravid traps, as well as as-
pirating mosquitoes from resting sites. In a recent study
[54] it has been observed that the number of freshly
engorged mosquitoes collected with BG traps is higher than
using CDC traps. Following these results, although in this
study we did not collect quantitative data on the status of

Table 1 Olfactory responses of Cx. pipiens females to odour extracts of selected bird species

Bird species N (%) odour N (%) control X df. pOA) Ryan’s test
Blackbird 39 (90.7) 4(93) 28.88 1 <0.001 a
Eurasian blackcap 49 (66.2) 25 (33.8) 7.15 1 <0.01 b
Eurasian magpie 34 (65.4) 18 (34.6) 433 1 <0.05 b
House sparrow 54 (64.8) 35(35.2) 416 1 <0.05 b

Columns description. N (%) odour: number and percentage of mosquitoes that exhibited preference to the odour extract solution; N(%) control: number and
percentage of mosquitoes that exhibited preference to the solvent; x2 statistics: chi-square test comparing the proportion of mosquitoes choosing odour vs.
control for each bird species; Ryan’s test: comparison of proportions of mosquitoes choosing the odour coming from different bird species (rows with the same

letter indicate that proportions are not statistically different at 0.05 level).
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the blood meals, we can affirm that most of the blood
meals identified at host species level derived from fresh
fully engorged females. In fact, analysing fresh fully
engorged females is essential to increase the success of
host identification. Martinez-de la Puente et al. [40]
showed that Sella score, a measure of the degree of
blood meal digestion status, significantly affects the
success of blood meal identification, with a significant
drop in success of host identification for mosquitoes
containing a blood meal in an advanced stage of diges-
tion (Sella score higher than 5, see [40]).

The preference of Cx. pipiens for the blackbird was
confirmed by the combination of two independent
methods: the molecular analysis of blood meals from wild
mosquitoes combined with avian census, and behavioural
bioassays in laboratory. The latter methodology identifies
intrinsic preferences, since it excludes potentially confound-
ing variables such as environmental conditions, bird abun-
dance and behaviour. Together, these findings suggest that
blackbird and magpie (as preferred species), along with
house sparrow and collared dove (as abundant species that
are opportunistically fed upon), have the potential to play a
crucial role in the circulation and amplification of West
Nile virus in Italy. In addition, blackbird represents a major
host for other viruses transmitted by Culex mosquitoes
which are closely related to West Nile virus, such as Usutu
virus and Sindbis virus [55]. The importance of blackbird
in northern Italy therefore, mirrors the importance of the
American robin (Turdus migratorius) in the United States
[3,14,17,18,22], and suggests that the true thrushes of the
genus Turdus may play a key role in the transmission of
zoonotic pathogens transmitted by Culex mosquitoes.

In Veneto, only a part of the blackbird breeding popu-
lation present in agricultural and urban areas is resident.
After breeding (March to July), many juveniles and
adults move from nesting areas to sites rich in fruiting
plants (e.g. Sambucus nigra, Viburnum lantana, Cornus
sanguinea, Prunus spinosa, P. padus) where they moult
and accumulate fat reserves prior to the autumnal
migration [42,43]. Because of these movements, only a
relatively small number are available as potential hosts
for Cx. pipiens mosquitoes. On the other hand, house
sparrow, magpie and collared dove are resident, but the
density of their populations increases at the end of the
summer because newly born juveniles add to the adult
populations [44]. Although a preference for blackbird
was consistent within the current study (among sites,
seasons, and methods), the degree of preference for
blackbird and for other species shifted both seasonally,
and with habitat. The highly variable nature of mosquito
feeding preference suggests that broader inferences about
the significance of blackbird, or genus Turdus in general,
must be made cautiously: similar studies in Europe should
be carried out in other areas and habitats.
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The behavioural bioassays confirmed the results ob-
tained in the field for blackbird, suggesting that the high
feeding preference index is the result of intrinsic mos-
quito preference. On the other hand, the behavioural
bioassays did not confirm preferences for magpie in re-
spect to other species, suggesting that the observed feed-
ing preference index in the field strongly depends on
host ecology/behaviour of this species in the area. How-
ever, since there is still a lack of knowledge of the chem-
ical composition of body odours of many European bird
species, it could be interesting in future to repeat the
behavioural bioassay using synthetic volatiles identified
from the headspace extracts of a larger number of local
birds species. The chemical analysis of their headspace
extract solutions and subsequent electrophysiological
recordings could help in selecting the single volatile
compounds involved in host recognition and in evaluat-
ing their activity even at longer range in either semi-field
or field conditions [47].

Overall these results suggest that while mosquito feed-
ing behaviour in the field can be partially ascribed to in-
trinsic feeding preferences, it is a plastic pattern which
can be overridden by environmental circumstances such
as avian abundance or behaviour [20]. For instance, the
observed avoidance of the barn swallow and the com-
mon house martin can be explained by their behaviour:
both are insect-eating birds that feed on the wing, and
are largely inaccessible to feeding mosquitoes for a sig-
nificant fraction of the day [56]. Differences in mosquito
preference between blackbird and common starling,
both of which feed on or near the ground, can perhaps
be partly explained by the crepuscular foraging habits of
the former, which fits with Culex mosquito feeding
habits [16,57], and the diurnal feeding habits of the latter
[44]. Recent studies carried out in North America dem-
onstrated that Culex mosquitoes feed more actively on
species roosting at high altitude (such as American
robin) rather than at the lower altitude, so that variation
in habitat use by host and vectors and social aggregation
by hosts influence vector-host interaction [22].

A sharp decline in the availability of blackbirds late in
summer during the mosquito activity season (i.e. July-
September) was reflected by a decrease in blackbird
blood meals. However, when abundance is taken into ac-
count it is apparent that the decrease in blood meals is
less than would be expected, as revealed by an increased
preference index. At the same time, we observed a sharp
increase in feeding on magpies. Our analyses suggest
that the overall apparent preference for magpies is en-
tirely driven by the late season preference. The observed
increase in magpie feeding preference is likely to be
driven in part by the decreased availability in blackbirds,
but also by the increase in communal roosting in late
summer/early fall that follows the end of the magpie
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breeding season [58]. On the other hand, blackbirds
maintain their home range throughout the year even
if during winter some latitudinal migration weather
dependent may occur. Clustering around winter food re-
sources might occasionally occur but the species, in the
study area, does not properly roost or nest in colonies
[59]. This interpretation is in agreement with others [16]
highlighting that, for nocturnal or crepuscular feeding
vectors as Cx. pipiens, the over-utilization of a host spe-
cies can arise from an overlap between mosquito micro-
climate selection and host roosting behaviour.

Human cases of WNV in Northern Italy tend to peak
in August-September (see e.g. [60]). This seasonality
may reflect the variation in feeding preference by
mosquitoes, as observed in the USA where a rise in hu-
man WNV infections coincides with a shift in feeding
behaviour following the dispersal of the American robin
[17]. Further studies conducted in Alabama (southern
USA) showed that host phenology and winter tempera-
tures may also contribute to the temporal shift in mos-
quito feeding pattern [21].

Mosquito feeding indices reflect a stronger preference
for blackbirds in rural areas, and for magpies in perido-
mestic environments. The preference for magpies in
peridomestic areas, where the contact rate with humans
is higher, suggests that they may be an important bridge-
host for WNV transmission to humans. Data from the
WNV surveillance program carried out on sinantropic
corvids in the WNYV circulation area of northern Italy
has evidenced that magpies contribute 70% of the WNV
positivity in corvids, suggesting a significant role for
magpies in WNV transmission [61]. In addition, the
potential importance of magpies in WNV amplification
and transmission could be supported by our observations
that the magpie feeding index is significantly greater in
areas with known WNV circulation, compared to sites
where WNV has never been detected. However, this hy-
pothesis needs to be validated. Since WNV positive and
negative sites in the study area were spatially clustered, al-
ternative hypotheses (such as different patterns in avian
community, habitat, and climatic conditions) may explain
the observed differences in WNV circulation.

There is a considerable knowledge gap in Europe in
relation to the reservoir competence for WNV and
this limits the possibility to further model the risk for
WNV transmission in relation to the local host commu-
nity composition and abundance. Blackbirds and mag-
pies have been found infected or at least exposed
(seroconversion) to WNV in Europe on several occa-
sions [62-66]. However, studies on their competence for
the strain of WNV circulating in Europe are still very
limited. Experimental studies on house sparrow both in
USA and in Europe showed that this species may de-
velop high levels of viraemia. However, competence may
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differ depending on the virus strain tested, and host
competence can vary geographically [67,68]. Species be-
longing to genera Turdus and Pica are highly competent
hosts for the WNV strain circulating in North America
[68,69], but unfortunately no studies have been per-
formed on these species so far with European WNV
strains. For these reasons, estimates of host competence
obtained in different epidemiological contexts must be
treated with caution.

Despite the acknowledged limitations, we believe that
the current study provides new and valuable insights
into the ecology of Cx. pipiens. Given the key role of Cx.
pipiens as the main vector of WNV and other emerging
flaviviruses such as Usutu virus, these findings are cru-
cial in order to implement targeted eco-epidemiological
research and surveillance.

Conclusions

West Nile virus is spreading in Europe and although the
number of human cases is still sporadic, it is fundamen-
tal to understand the ecological mechanism driving its
emergence and spread, including the contribution of
different avian species as feeding hosts of Cx. pipiens
mosquitoes in order to identify potential virus amplifiers.
Here, we found that the blackbird (Turdus merula) is
the most preferred species by Cx. pipiens both in the
field and laboratory experiments. However, later in
the mosquitoes activity season (from July to October),
the abundance of blackbird drops significantly and Cx.
pipiens preferences shift toward the Eurasian magpie
(Pica pica). Magpie is highly preferred by Cx. pipiens
in sites closer to human settlements indicating that this
species may contribute to WNV seasonal spill-over
events to human and domestic animal species.
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