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Abstract

Background: Tryparedoxin peroxidase (TXNPx) participates in defence against oxidative stress as an antioxidant by
metabolizing hydrogen peroxide into water molecules. Reports suggest that drug-resistant parasites may increase
the levels of TXNPx and other enzymes, thereby protecting them against oxidative stress.

Methods: In this study, the gene encoding cytosolic TXNPx (cTXNPx) was characterized in lines of Leishmania
(Viannia) braziliensis and Leishmania (Leishmania) infantum that are susceptible and resistant to potassium antimony
tartrate (Sb(lll)). We investigated the levels of mRNA and genomic organization of the cTXNPx gene. In addition, we
transfected the Leishmania lines with the cTXNPx gene and analysed the susceptibility of transfected parasites to Sb
(I and to hydrogen peroxide (H>0,).

Results: Northern blot and real-time reverse transcriptase polymerase chain reaction analyses revealed that the level
of TXNPx mRNA was approximately 2.5-fold higher in the Sb(lll)-resistant L. braziliensis line than in the parental line.
In contrast, no significant difference in cTXNPx mRNA levels between the L. infantum lines was observed. Southern
blot analyses revealed that the cTXNPx gene is not amplified in the genome of the Sb(ll)-resistant Leishmania lines
analysed. Functional analysis of cTXNPx was performed to determine whether overexpression of the enzyme in

L. braziliensis and L. infantum lines would change their susceptibility to Sb(lll). Western blotting analysis showed that
the level of cTXNPx was 2 to 4-fold higher in transfected clones compared to non-transfected cells. Antimony
susceptibility test (ECsq assay) revealed that L. braziliensis lines overexpressing cTXNPx had a 2-fold increase in
resistance to Sb(lll) when compared to the untransfected parental line. In addition, these clones are more tolerant
to exogenous H,0, than the untransfected parental line. In contrast, no difference in Sb(lll) susceptibility and a
moderate index of resistance to H,O, was observed in L. infantum clones overexpressing cTXNPx.

Conclusion: Our functional analysis revealed that cTXNPx is involved in the antimony-resistance phenotype in L. braziliensis.

Keywords: L. braziliensis, L. infantum, Drug resistance, Potassium antimony tartrate, Cytosolic tryparedoxin peroxidase,
Antioxidant defence

Background

Leishmaniasis refers to a spectrum of diseases caused by
different species of protozoan parasites belonging to the
genus Leishmania. An estimated 12 million people are
infected with Leishmania parasites and an additional
350 million people are at risk worldwide [1]. The clinical
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manifestation of the disease depends on genetic factors,
the host immune system, and mainly on the parasite
species involved [2]. In the New World, L. (Leishmania)
infantum (syn. L. (L.) chagasi) [3] is the causative agent
of visceral leishmaniasis, whereas L. (V.) braziliensis
causes cutaneous and mucocutaneous leishmaniasis [4].
The control of leishmaniasis relies primarily on chemo-
therapy. The pentavalent antimony-containing compounds
(sodium stibogluconate- Pentostam® and N-methyl-glucamine-
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Glucantime®) have been the first-line drugs for treatment
of all forms of the disease for more than 70 years [5].
The mechanism of action of antimony has not been fully
elucidated. Studies suggest that Sb(V) inhibits macromol-
ecular biosynthesis in amastigotes, possibly altering energy
metabolism by inhibiting glycolysis and the oxidative
pathway of fatty acids [5,6]. Sb(III) is purported to gener-
ate disturbances in the thiol redox potential of the parasite
by inducing the efflux of intracellular thiols and by inhibit-
ing trypanothione reductase, resulting in cell death by
oxidative stress [7].

The drugs used against leishmaniasis have several draw-
backs, including toxic side effects, high cost, and the oc-
currence of antimony-resistant Leishmania strains [8].
The resistance to pentavalent antimonials has reached
epidemic proportions in Bihar (India), where more than
60% of patients with visceral leishmaniasis were unre-
sponsive to Sb(V) treatment [9]. Even though the mech-
anism of antimony-resistance in Leishmania spp. has
been widely studied, many questions remain unanswered
[8]. It has been described that resistance involves inter-
play between uptake, efflux, and sequestration of active
molecules [8,10].

Most parasites, including Leishmania spp., are more
susceptible to reactive oxygen species than their hosts
[8,11]. To prevent cell damage due to reactive oxygen
species (ROS), organisms have developed different anti-
oxidant defence systems [12]. In trypanosomatids, per-
oxidases display a unique feature in using reducing
equivalents derived from trypanothione, a dithiol found
exclusively in these protozoa, in contrast to other eu-
karyotes that utilize glutathione and catalase [13,14].
The function of these antioxidant enzymes include de-
fence against chemical and oxidative stress, by catalyzing
the reduction of hydrogen peroxide and small-chain or-
ganic hydroperoxides to water and alcohol, respectively.
The combined action of trypanothione reductase, trypar-
edoxin, and tryparedoxin peroxidase is central to the
maintenance of a low concentration of hydrogen perox-
ide (H,0,) [12].

Tryparedoxin peroxidase (TXNPx) belongs to the 2-
cysteine peroxiredoxin family, and can be grouped ac-
cording to its compartmentalization to the cytosol or
mitochondria [14]. These enzymes are highly conserved
and they are present in various Leishmania species
[15-17]. Recently, our proteomic analyses have revealed
that cytosolic TXNPx (cTXNPx) is overexpressed in
antimony-resistant L. braziliensis and L. infantum lines
[18]. However, its role in the Sb(III)-resistance phenotype
in these Leishmania species had not been elucidated.
Thus, the aim of the present study was to characterize
TXNPx in these lines by assessing mRNA levels and
genomic organization. In addition, functional analysis
of ¢cTXNPx was performed to determine whether its
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overexpression in Leishmania lines would change the
susceptibility of the parasites to antimony (Sb(III)) and
hydrogen peroxide (H,O,).

Methods

Leishmania spp. samples

Promastigote forms of L. (Viannia) braziliensis (MHOM/
BR/75/M2904) and L. (Leishmania) infantum (syn. L. (L.)
chagasi) (MHOM/BR/74/PP75) were used in this study.
Sb(III)-resistant lines were previously obtained from wild-
type L. braziliensis and L. infantum lines by stepwise
increasing the drug pressure with Sb(III) [19]. These re-
sistant lines are 20 and 4-fold less sensitive to SbIII than
their respective parental counterparts [19]. Promastigote
forms of these Leishmania lines were grown in M199
medium, harvested in the logarithmic growth phase,
washed in PBS and the parasite pellets were used for
DNA, RNA and protein preparations.

RNA and DNA preparations

Total RNA and genomic DNA from Leishmania lines
were extracted as previously described [20]. Southern
and northern blots were carried out using a protocol
previously described [21]. Probes for both assays were
prepared by amplification of a 592 bp fragment of
c¢TXNPx gene from L. braziliensis (TritrypDB accession
no. Lbr15.1080) using specific primers (forward primer:
5'-CGGTGACGCCAAAATGAAC- 3’; reverse primer:
5'- CTACACCGTGCTGAAGTAGC- 3’). The corre-
sponding fragment has 87.4% nucleotide sequence iden-
tify with the ¢cTXNPx gene from L. infantum. The PCR
product was labelled with [a-*P] dCTP using Nick
Translation Kit (Invitrogen, Carlsbald, CA) following
the manufacturer’s instructions. Blots were hybridized
with a *’P-labelled ¢TXNPx-specific probe, according
to Murta et al. [21]. Band intensities were analyzed using
the software CP ATLAS 2.0 (http://lazarsoftware.com/
download.html).

Quantitative real time RT-PCR

The protocol employed for the preparation of first
strand ¢cDNA and the procedure for real time RT-PCR
were as previously described [10]. ¢cDNA was used
for RT-qPCR amplification on an ABI Prism 7500 -
Sequence Detection System (PE Applied Biosystems,
Foster City, CA, U.S.A.). The specific primers (forward
primer: 5° CGGTGACGCCAAAATGAAC 3’; reverse
primer 5'- GAAGTCAAGCGGGTAGAAGAAGAG- 3")
employed were designed from the complete nucleotide
sequence of the ¢TXNPx gene (Lbr15.1080). The 18S
small subunit ribosomal RNA (18S SSU rRNA) constitu-
tive gene from Leishmania was used to normalize the
amount of sample analyzed. The primers (forward pri-
mer: 5'- TCTAGGCTACCGTTTCGGCTT-3’; reverse
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primer: 5 -CACACACCGAACCGAAGTTG-3") were
designed from the complete nucleotide sequence of
the 185 SSU rRNA gene (LmjF.27.rRNA.OI). Both pair
of primers amplified fragments of 136 bp and 97 bp re-
spectively, in all Leishmania lines (data not shown).
Standard curves were prepared for each run using known
quantities of pCR 2.1-TOPO plasmids (Invitrogen) con-
taining the ¢TXNPx and 18S SSU rRNA genes. Estimates
of transcript levels were obtained using the Sequence
Detection System data analysis software. Values were
normalized to those obtained for 185 SSU rRNA for
each sample.

Generation of cTXNPX overexpressing lines

A 600 bp fragment corresponding to L. braziliensis
c¢TXNPx ORF (TritrypDB accession number LbrM15.1080)
was amplified with Pfx DNA polymerase (Invitrogen) from
L. braziliensis genomic DNA using the forward primer:
5'-tAGATCTccaccATGTCCTGCGGTGACGCCAA-3’
and the reverse primer: 5'-ttAGATCTCTACACCGTGCT-
GAAGTAGC-3" in which the italicized sequences corres-
pond to Bg/lI restriction site. The obtained PCR product was
cloned into the pGEMT-easy vector (Invitrogen) and sub-
sequently submitted on an ABI 3130 (Applied Biosystems,
Foster City, CA, USA) for confirmation of correct se-
quence. The pGEM-LbcTXNPX construct was restricted
with Bg/Il and the released fragment was subcloned into
the dephosphorylated pIR1-BSD expression vector, gener-
ously provided by Dr. Stephen Beverley (Washington
University in St. Louis — USA). To confirm correct direc-
tion of cloning, the construct was then digested with
BamHI releasing fragments that confirmed the sense dir-
ection of gene. Thereafter, the constructs pIR1-BSD
(empty vector) and pIR1-BSD-Lb ¢TXNPx were linearized
by Swal digestion and electroporated into L. braziliensis
and L. infantum wild type lines using a GenePulser XCell
(BioRad, Hercules, CA, USA). This allowed integration of
the vector into the ribosomal small subunit locus [22].
Colonies were obtained following plating on semisolid
M199 medium containing Blasticidin (BSD) (10 pg/ml),
after 1-2 weeks. Clonal lines were generated and the pres-
ence of construct was confirmed by PCR tests using gen-
omic DNA with specific primers for the BSD marker.

Western blotting analysis

In order to investigate the cTXNPx levels of transfected
lines, Western blot assays were carried out. Total pro-
tein from the different Leishmania clonal lines were ex-
tracted according to the protocol described by Gamarro
et al. [23]. Proteins extracts (20 pg) were separated by
electrophoresis on a 12% SDS polyacrylamide gel and elec-
trotransferred onto nitrocellulose membrane (Bio-Rad).
The membrane was blocked by incubation with 5% instant
non-fat dry milk in PBS supplemented with 0.05% Tween

Page 3 of 9

20 (PBS-T) for 1 h. The membrane was then washed
twice in PBS-T for 5 min and incubated for 16 h at 4°C
in the blocking solution with a polyclonal rabbit anti-T.
cruzi TXNPx antibody (1:500) [24] (kindly provided by
Dr. Fernanda Nogueira, CPqRR, Belo Horizonte, Brazil).
The blots were washed three times in PBS-T and then
incubated for 1 h with alkaline phosphatase-conjugated
anti-rabbit IgG (Invitrogen) diluted 1:6.000 in blocking
solution. Subsequently, the blots were developed using a
colorimetric method (Bio-Rad) following the manufac-
turer’s instructions. The blots were normalized using a
monoclonal anti-a-tubulin antibody (1:10.000) (Sigma,
St. Louis, USA). The intensity of the bands was analyzed
using the software CP ATLAS 2.0.

Susceptibility of Leishmania spp. clonal lines to Sb(lll) and
hydrogen peroxide

Promastigotes of wild-type L. braziliensis and L. infantum
transfected or non-transfected with the constructs pIR1-
BSD (empty vector) or pIR1-BSD-LbcTXNPx were
submitted to Sb(III) and hydrogen peroxide (H,O,) sus-
ceptibility tests. Parasites were incubated in M199 medium
at 2 x 10° cells ml™" in 24-well plates in the absence or
presence of various concentrations of SbIII (0.0125 to
1 mg/ml) or H,O, (200 to 600 pM) for 48 hours. The con-
centration of Sb(III) or H,O, required to inhibit the growth
by 50% (ECsp) was determined using a Z1 Coulter Counter
(Beckman Coulter, Fullerton, CA, USA). ECy, values were
determined from three independent measurements, each
performed in triplicate, using the linear interpolation
method [25].

Statistic analysis

All experiments were performed at least three times and
data have been represented as mean + standard devi-
ation. Data were analyzed by Student’s ¢ test performed
using the software GraphPad Prism 5.0. A p value of less
than 0.05 was considered statistically significant.

Results

Genomic organization of the cTXNPX gene

Genomic organization of the ¢TXNPx gene in Sb(III)-
resistant and -susceptible lines of L. braziliensis and
L. infantum was determined by Southern blot analysis of
parasite DNA digested with an endonuclease (EcoRI or
BamH]I). Hybridization of the blots with an LbcTXNPx
gene specific probe revealed that EcoRI-digested DNA
gave a major band of 14.0 kb for both L. braziliensis lines,
and bands of 0.6, 0.8, 4.0, and 14.0 kb for L. infantum
lines (Additional file 1: Figure S1). Upon hybridization,
BamHI-digested DNA from L. braziliensis lines identi-
fied a single 12 kb band, while lines from L. infantum
contained bands of 0.5, 0.6, and 12 kb (Additional file 1:
Figure S1). Others bands having a low intensity were
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also observed. We observed a polymorphism in the
¢TXNPx sequence between both Leishmania species ana-
lysed. Comparative densitometry of the bands showed no
amplification of ¢TXNPx gene in both Sb(III)-resistant
Leishmania lines.

Determination of cTXNPx mRNA levels
The levels of ¢cTXNPx mRNA across different parasite
lines were evaluated by Northern blot. A transcript of
0.5 kb was detected in Northern blots from Sb(III)-sus-
ceptible and -resistant L. braziliensis and L. infantum
lines following hybridization with a **P-labelled cytosolic
tryparedoxin peroxidase from L. braziliensis (LbcTXNPx)
gene specific probe (Figure 1A). Loading controls using
a ribosomal RNA probe are shown in Figure 1B. Densi-
tometry of the transcript profiles revealed that the
¢TXNPx mRNA level was 2.5-fold higher in the Sb(III)-
resistant L. braziliensis line when compared to the par-
ental line (Figure 1C). No difference in the levels of
¢TXNPx mRNA was detected in both Sb(III)-resistant
and -susceptible L. infantum lines.

c¢TXNPx mRNA levels were determined with greater
precision by RT-qPCR. The amount of ¢cTXNPx cDNA
and 18S SSU rRNA in different Leishmania lines was de-
termined by linear regression analysis using the PCR
threshold cycle (Ct) values obtained from the standard
curve generated with known amounts of the plasmids
containing these genes. The amount of ¢cTXNPx cDNA
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in each line was normalized to the reference housekeep-
ing gene, 185 SSU rRNA (LmjF.27.rRNA.01). The re-
sults confirmed the northern blot data, demonstrating
that the level of ¢cTXNPx gene transcripts was 2.5-fold
higher in the Sb(Ill)-resistant L. braziliensis line when
compared to the parental line. In addition, no difference
was detected between the lines of L. infantum analysed
(Figure 1D).

Overexpression of cTXNPx gene in L. braziliensis and

L. infantum lines

We transfected wild-type L. braziliensis and L. infantum
lines with the construct pIR1-BSD-LbcTXNPx to generate
transfectants overexpressing cTXNPx. Linearization of the
vector allowed integration of the construct into the ribo-
somal small subunit locus, by homologous recombination
[26]. The successful integration of constructs was
confirmed by PCR, using genomic DNA as template and
with specific primers for the Blasticidin (BSD) marker.
About 24 clones each for pIR1-BSD (empty vector) and
pIR1-BSD-LbcTXNPX from L. braziliensis and L. infantum
lines were analysed by PCR. It was observed that all
blasticidin-resistant clones produced a fragment of 399 bp,
indicative for the BSD marker (data not shown). These
clones were subjected to Western blotting analysis to evalu-
ate the level of cTXNPX. The anti-T. cruzi TXNPX anti-
body [24] recognized a 23 kDa band in all Leishmania
clones (Figure 2A). Densitometry of the ¢TXNPx band
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Figure 1 Levels of cTXNPx gene transcript in Sb(lll)-susceptible and Sb(lll)-resistant L. braziliensis and L. infantum lines. (A) Northern
blot analysis of total RNA (20 ug) from Leishmania spp. lines separated on a 1.2% agarose gel and transferred to nylon membranes. Blots were
hybridized with a **P-labelled cTXNPx-specific probe. (B) As a control, the same nylon membrane was hybridized with a *’P-labelled 245
rRNA-specific probe. (C) Quantification of bands was done by densitometric analysis using the software CP ATLAS 2.0. (D) Levels of cTXNPx mRNA
of L. braziliensis and L. infantum lines determined quantitatively (relative to the 18S small subunit ribosomal RNA -18S SSU rRNA) by real-time PCR.
Mean values of the transcript levels of cTXNPx/SSU + standard deviations as determined from three independent experiments are shown. Statistically
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Figure 2 cTXNPx expression levels in clonal lines from L. braziliensis and L. infantum untransfected or transfected with constructs
pIR1-BSD/pIR1-BSD-LbcTXNPx. Total protein (20 pg) was separated on a 12% SDS polyacrylamide gel and blotted onto nitrocellulose membranes.
The blots were probed with a polyclonal rabbit anti-T. cruzi cTXNPx antibody (1:500) (A) and with a monoclonal anti-a-tubulin antibody (1:10.000)
(B) and developed with NBT/BCIP. (C) Quantification of bands was done by densitometric analysis using the software CP ATLAS 2.0. Statistically
different values are indicated as follows: *p < 0.003.

using an anti-a tubulin antibody as reference (Figure 2B)
showed that the level of cTXNPx was 2 to 4-fold higher
in the transfected clones from both L. braziliensis and
L. infantum lines when compared to the untransfected con-
trols (Figure 2C).

Susceptibility of cTXNPX overexpressing lines to Sb(lll)

In order to investigate whether overexpression of cT XNPx
gene favours an antimony-resistance phenotype, clonal
lines from L. braziliensis and L. infantum transfected with
the constructs pIR1-BSD (empty vector) or pIR1-BSD-
LbcTXNPx and untransfected parasites were subject to
a Sb(III) susceptibility test. As shown in Figure 3A, with
increasing concentrations of Sb(III) there was a rapid de-
cline in the percentage of live parasites in both untrans-
fected and empty vector transfected L. braziliensis lines
when compared to ¢cIXNPx overexpressing lines. The
concentration of Sb(III) required to inhibit the growth of
the parasites by 50% (effective concentration- ECsy) was
0.03 mg/ml for both controls. In contrast, cIXNPx over-
expressing lines were 2.3-fold more resistant to Sb(III),
with an ECs of 0.07 mg/ml. Interestingly, L. infantum
c¢TXNPx overexpressing lines did not show an increase in

resistance towards Sb(III). The cTXNPx overexpressing
lines had an EC50 value (0.11 mg/ml) similar to that of
the controls (0.12 mg/ml) (Figure 3B).

Tolerance of cTXNPx overexpressing lines to hydrogen
peroxide

The tolerance to oxidative stress generated by increased
concentrations of hydrogen peroxide was evaluated in
the cTXNPx overexpressing lines of L. braziliensis and
L. infantum (Figure 4). In vitro assays revealed that the
¢TXNPx overexpressing LbWTS clones 11 and 12 dis-
played an ECs, value towards H,O, of 408 and 400 pM,
respectively (Figure 4A). In contrast, untransfected and
empty vector transfected lines exhibited lower ECsq
values for H,O, (260 and 256 pM, respectively). Thus,
c¢TXNPx overexpressing lines were 1.56-fold (p <0.001)
more tolerant to exogenous hydrogen peroxide than con-
trols in L. braziliensis. A moderate index of resistance to
H,0, was observed for the cTXNPx overexpressing lines
of L. infantum compared to that of L. braziliensis. LIWTS
clones 1 and 5 displayed ECs values of 456 and 450 puM,
respectively towards H,O, (Figure 4B). In contrast,
untransfected and empty vector transfected lines exhibited



Andrade and Murta Parasites & Vectors 2014, 7:406
http://www.parasitesandvectors.com/content/7/1/406

Page 6 of 9

>

100
S
“
2
]
g
L]
o
2
-
0.0125 0.025 0.06 0.1
Sblll [mg/mi]
B

Live parasites (%)

0.025  0.05 0.1
Sblll [mgimi]

and ***p < 0.002.

Figure 3 Sb(lll) susceptibility of clonal lines from L. braziliensis (A) and L. infantum (B) untransfected or transfected with constructs
pIR1-BSD or pIR1-BSD-LbcTXNPx. Parasites were incubated in M199 medium in the absence or presence of various concentrations of Sbo(lll)
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lower ECsq values for HyO, (373 and 368 pM, respect-
ively). Thus, cTXNPx overexpressing lines were 1.22-fold
(p <0.001) more tolerant to exogenous hydrogen peroxide
than controls in L. infantum.

Discussion

Antioxidant defence is a promising target for chemother-
apy against trypanosomatids, since these organisms
present a unique mechanism for detoxification of perox-
ides that is dependent on trypanothione, which differs
from the glutathione-based system found in vertebrates.
In trypanosomatids, TXNPx participates in defence
against oxidative stress by metabolizing hydrogen perox-
ide into water molecules [12]. This enzyme is critical to
the survival of Leishmania during oxidative stress gener-
ated by macrophages and by drugs [27]. In previous stud-
ies carried out by our group, using proteomic analysis it
was indicated that seven protein spots corresponding to
TXNPx were 2 to 5-fold more abundant in the Sb(III)-re-
sistant lines of both L. braziliensis and L. infantum species
than in their Sb(III)-susceptible parental lines [18]. In the
present work, we have extended these results by charac-
terizing ¢TXNPx in Sb(Ill)-susceptible and -resistant

L. braziliensis and L. infantum lines and by performing
functional analysis of this enzyme.

Our results demonstrated that in the Sb(III)-resistant
L. braziliensis line the increase in ¢cTXNPx mRNA levels
(2.5-fold) is correlated with high cTXNPx protein levels
(3-fold; Matrangolo et al. [18]). In contrast, no difference
in the transcription level of this gene was found for Sb
(I1I)-resistant and -susceptible L. infantum lines. How-
ever, Matrangolo et al. [18] showed that the c¢TXNPx
protein level was 1.6-fold higher in the Sb(III)-resistant
L. infantum lines when compared with Sb(III)-susceptible
parental lines. Since gene expression in trypanosomatids
is regulated mainly at the post-transcription level [28],
our results suggest that the higher levels of cTXNPx pro-
tein detected in the Sb(III)-resistant L. infantum (LiSbR)
line maybe related to an increased stability of mRNA or
more efficient protein translation when compared with the
wild-type L. infantum (LiW'TS) pair.

Altogether, these findings are in agreement with existing
data reporting an increase in TXNPx mRNA and TXNPx
protein levels in drug-resistant parasites. Nogueira et al. [24]
demonstrated an increased expression of TXNPx transcript
and TXNPx protein in 7. cruzi resistant to benznidazole.
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Figure 4 In vitro tolerance of L. braziliensis (A) and L. infantum (B) lines untransfected or transfected with constructs pIR1-BSD/
pIR1BSD-cTXNPx, to exogenous hydrogen peroxide. Parasites were cultured for 48 h in the presence of different concentrations of hydrogen
peroxide and the percentages of live parasites were determined using a Z1 Coulter Counter. Mean values + standard deviations from three
independent experiments in triplicate are shown. Statistically different values are indicated as follows: *p < 0.04, **p < 0.005 and ***p < 0.0001.
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Metronidazole-resistant Entamoeba histolytica showed a
3-fold increase in its TXNPx mRNA levels [29]. In an Sb
(III)-resistant L. tarentolae line, an increase of cytosolic
(6.5-fold) and mitochondrial (1.8-fold) TXNPx enzymes
has been reported [30]. Protein analyses indicated high
levels of TXNPx in antimony-resistant L. donovani lines
[31] and gentamicin-resistant L. infantum clones [32].

In order to investigate the role of cTXNPx in protecting
the parasite against oxidative stress and its involvement
in Sb(III)-resistance, this enzyme was overexpressed in
L. braziliensis and L. infantum promastigotes. Interestingly,
clones from L. braziliensis that overexpress the ¢cTXNPx
were 2-fold more resistant to Sb(IIT). This result indicates
that the enzyme is involved in the Sb(III)-resistance pheno-
type probably along with other enzymes, since the drug re-
sistance phenotype is known to be multifactorial and
multigenic. TXNPx is a key antioxidant enzyme important
for parasite resistance to oxidative stress. Previous studies
have demonstrated that Sb(III) perturbs the thiol redox

potential of the parasite, leading to accumulation of reactive
oxygen species (ROS) [7,33]. Sb(III) forms a complex with
either trypanothione or glutathione that can be seques-
trated in an intracellular compartment or directly excreted
from parasites in response to SbIIl treatment [7,8]. Thus,
Sb(III) decreases intracellular thiol buffer capacity, and
it also increases the intracellular concentration of the disul-
fide forms of these thiols through inhibition of trypa-
nothione reductase [7]. These effects of Sb(IIl) favour
increased levels of ROS. Overexpression of TXPNx confers
resistance to Sb(III) by an increased enzyme activity that
acts to reduce levels of ROS induced by exposure to Sb(III).
Data from literature reinforce our results in L. braziliensis,
since overexpression of TXNPx in L. tarentolae caused a
significant increase in resistance to Sb(III) [30]. In contrast,
overexpression of an enzymatically inactive TXNPx failed
to result in resistance to Sb(III) [30]. These data suggest
that the mechanism of TXNPx-dependent resistance is
likely due to enhanced antioxidant activity.
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Reports have shown that parasites overexpressing
c¢TXNPx exhibit a high level of resistance to reactive
oxygen radicals. In T. cruzi, it has been reported that
overexpression of TXNPx protects the parasite from
H,0, and organic peroxide ¢-butyl hydroperoxide dam-
age [34,35]. Lyer et al. [36] observed an increase in the
cTXNPx levels in L. donovani after exposure to H,O,.
Additionally, the authors also demonstrate that L. dono-
vani parasites transfected with cTXNPx are more resist-
ant to antimony and exhibit an increase in virulence
when compared to parental parasites. All these data are
in agreement with our results showing that ¢cTXNPX
overerexpressing L. braziliensis and L. infantum clones
are more tolerant to exogenous H,O, than an untrans-
fected parental line. However, the L. infantum clones
present a moderate index of tolerance to H,O, when
compared to L. braziliensis. This difference could ex-
plain, at least in part, the absence of resistance to Sb(III)
in these clones, since our results show that overexpres-
sion of this enzyme has no direct involvement in the
Sb(III)-resistance in L. infantum. In addition, the ab-
sence of Sb(III) resistance in cTXNPx overerexpressing
L. infantum could also be due to differences in antimony-
resistance mechanisms between these two Leishmania
species. Moreira et al. [10] demonstrated that an Sb(III)-
resistant L. braziliensis line presented an increased expres-
sion of the MRPA gene product and a reduction in the
accumulation of antimony. However, no difference was
detected between the Sb(IlI)-resistant and susceptible
L. infantum lines.

Conclusion

The results of the functional analysis revealed that
¢TXNPx is involved in the antimony-resistance pheno-
type in L. braziliensis. However, in L. infantum, this en-
zyme does not seem to be directly associated with
resistance to Sb(III). Interestingly, Wyllie et al. [31] have
reported elevated levels of TXNPx in antimony-
unresponsive L. donovani field isolates. These data sug-
gest that increased expression of this enzyme may play
an important role in clinical resistance to antimony.

Additional file

Additional file 1: Figure S1. Southern blot analysis of the cTXNPx gene
from wild-type and Sblll-resistant L. braziliensis and L. infantum lines. Genomic
DNA (10 pg) was digested with EcoRlI (a) and BamHI (b) endonucleases,
subject to electrophoresis on a 1% agarose gel and transferred to nylon
membranes. Blots were hybridized with a *2P-labeled cTXNPx-specific
probe. As control, the same nylon membranes were hybridized with a
32p_labeled rRNA-specific probe (c and d). The molecular weight markers
used were the 1 Kb Plus DNA ladder.

Abbreviations
Sblll: Potassium antimony! tartrate; WTS: Wild-type susceptible; SbR: Sblll-resistant;
Lb: L. (V.) braziliensis; Li: L. (L.) infantum; cTXNPx: Tryparedoxin peroxidase cytosolic;
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