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Abstract

Background: The Middle East North Africa (MENA) region is under continuous threat of the re-emergence of West
Nile virus (WNV) and Rift Valley Fever virus (RVF), two pathogens transmitted by the vector species Culex pipiens.
Predicting areas at high risk for disease transmission requires an accurate model of vector distribution, however,
most Cx. pipiens distribution modeling has been confined to temperate, forested habitats. Modeling species
distributions across a heterogeneous landscape structure requires a flexible modeling method to capture variation
in mosquito response to predictors as well as occurrence data points taken from a sufficient range of habitat types.

Methods: We used presence-only data from Egypt and Lebanon to model the population distribution of Cx. pipiens
across a portion of the MENA that also encompasses Jordan, Syria, and Israel. Models were created with a set of
environmental predictors including bioclimatic data, human population density, hydrological data, and vegetation
indices, and built using maximum entropy (Maxent) and boosted regression tree (BRT) methods. Models were
created with and without the inclusion of human population density.

Results: Predictions of Maxent and BRT models were strongly correlated in habitats with high probability of
occurrence (Pearson’s r = 0.774, r = 0.734), and more moderately correlated when predicting into regions that
exceeded the range of the training data (r = 0.666,r = 0.558). All models agreed in predicting high probability of
occupancy around major urban areas, along the banks of the Nile, the valleys of Israel, Lebanon, and Jordan, and
southwestern Saudi Arabia. The most powerful predictors of Cx. pipiens habitat were human population density
(60.6% Maxent models, 34.9% BRT models) and the seasonality of the enhanced vegetation index (EVI) (44.7%
Maxent, 16.3% BRT). Maxent models tended to be dominated by a single predictor. Areas of high probability
corresponded with sites of independent surveys or previous disease outbreaks.

Conclusions: Cx. pipiens occurrence was positively associated with areas of high human population density and
consistent vegetation cover, but was not significantly driven by temperature and rainfall, suggesting human-induced
habitat change such as irrigation and urban infrastructure has a greater influence on vector distribution in this region
than in temperate zones.
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Background
With rapidly expanding urban populations, recent refu-
gee movements, internal displacement, and widespread
civil strife, parts of the Middle East are becoming in-
creasingly vulnerable to vector-borne diseases (VBDs).
Urban growth, in particular, has expanded faster than
the supply of available housing and supporting infra-
structure, resulting in a large proportion of the popula-
tion living in unsanitary conditions, which may increase
human exposure to bites of infected vectors that prolif-
erate in urban environments [1-4].
Prior to the recent period of civil conflict, the region

has experienced the emergence and resurgences of two
deadly diseases. Rift Valley Fever Virus caused an epi-
demic in Egypt in 1977, 1993 and 2003, and hit Saudi
Arabia and Yemen in 2000 and 2001 [5-7]. In addition,
West Nile virus, a nearly “forgotten” disease re-emerged
in a severe country-wide epidemic in Israel in 2000, with
a fatality rate of 8.4% [8]. Between 2010 and 2012, 200
West Nile cases were reported in Israel [9]. While the
causes for the recent resurgence of neglected tropical
diseases like West Nile Virus, Rift Valley Fever Virus,
and Leishmaniasis are not fully understood, it is cause
for renewed interest and increased attention to disease
dynamics in the region [2,10,11].
Molecular and epidemiological studies have shown

that Cx. pipiens is a vector of both Rift Valley Fever
virus and West Nile Virus [6,12-16]. It has a preference
for living near areas of high human population density,
and breeding in the artificial containers abundant in
close proximity to human settlements [17,18] or polluted
pools of water associated with human activities [19-22].
The species also feeds opportunistically from a wide var-
iety of blood hosts [23,24], and is active nearly year
round [21]. This vast ecological plasticity makes it a po-
tentially significant vector. As such, understanding the
distribution of Cx. pipiens throughout the region is a
fundamental requirement to understanding transmission
dynamics.
Habitat suitability models for Cx. pipiens in general

have identified rainfall, temperature, and vegetation to
be major drivers of population distribution [25,26].
Density of hosts has also been found to be significantly
correlated with habitat suitability in related species [27].
However, these studies were largely conducted in differ-
ent climatic regions than those dominant in the MENA
region, and therefore the identified predictors would not
necessarily explain vector distributions in arid and semi-
arid regions. Environmental predictors will be most in-
formative at scales and across regions where they exhibit
sufficient heterogeneity to accurately discern suitable
from unsuitable habitat. The relative information values
of predictors shift as underlying climatic conditions
change, and so does the nature and identity of the most
significant vector-habitat relationship in the model. In
Egypt, climatic variables such as ambient temperature,
relative humidity, and wind speed did not significantly
distinguish sites with high and low filariasis transmission
vectored by Cx. pipiens, which was positively correlated
with temperature and negatively correlated with rainfall
[28]. In Australia, the critical climate factors for predicting
outbreaks of Ross River virus vary significantly between
different environmental regions within a single state [29].
Simulation models of Cx. quinquefasciatus across the
southern United States revealed significantly different sen-
sitivities of mosquito populations to temperature and pre-
cipitation in arid and humid habitats [30].
The aim of the present work is to investigate the rela-

tionship between the distribution of Cx. pipiens and the
environment in the Middle East and subsequently derive
vector distribution surfaces. Accordingly, we used data
collected from a wide range of habitats in the region and
two different but robust presence-only species distribu-
tion models (SDMs), Maxent and boosted regression
trees (BRT). The models examined the role of human
populations, climatic, hydrological, and vegetation pa-
rameters in predicting habitat suitability.

Methods
Selecting modeling approaches
In order to strengthen confidence in predicting Cx. pipiens
distributions, we incorporated two modeling approaches,
Maximum entropy implemented in Maxent software, and
boosted regression trees. Regression models are powerful
tools for selecting relevant predictors and modeling com-
plex interactions, while boosting avoids misclassification
problems inherent in a single tree model. Thus our com-
bined models would enable powerful selection of relevant
predictors and accurate modeling of complex interactions.
The previously discussed non-uniform relationships be-
tween other Culex species and critical climate factors [30]
suggest such interactions may possibly contribute signifi-
cantly to Cx. pipiens distributions as well. Thus, the use of
model intercomparisons leads to greater confidence in the
predictions of the distribution. Using Maxent as our alter-
native method allows for comparisons with the predictions
of one of the most familiar and frequently applied pres-
ence only modeling techniques [31-34].

Modeling species distribution using maximum entropy
Maximum entropy is a machine learning algorithm that
produces predictions of habitat suitability by comparing
the conditional density of predictors at presence sites
with the marginal density of predictors across the study
area. The raw output of Maxent is a probability of habi-
tat suitability [35,36]. To make model output more inter-
pretable, Maxent converts the exponential values of its
raw output estimate of habitat suitability into a logistic
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output that represents an estimate of probability of pres-
ence [37].

Modeling species distribution using boosted regression
trees
Boosted regression trees predict the value of a target
variable based on the value of several input variables.
Boosting uses a machine learning algorithm to produce
a final prediction model that is an ensemble of weak pre-
diction models, in this case, an ensemble of regression
trees. The model is built in a stage wise fashion; a re-
gression tree is fit to the original data, then the residuals
of that model become the new data values, to which a
second tree is fit, and so forth. By fitting each subse-
quent tree in the model to the residuals of the previous
tree, the data become re-weighted in each iteration.
Points that were misclassified by the previous model will
now have more weight than values that were classified
correctly. As a result, the subsequent tree will focus on
fitting these misclassified points. The process is condi-
tioned by the learning rate, which controls the contribu-
tion of each tree to the final model.
The final model can consist of thousands of trees,

however, over-fit models will exaggerate minor fluctua-
tions in the data, making them poor predictors. Boosted
regression uses cross validation to minimize over-fitting
by determining when adding additional trees no longer
Figure 1 Sampling locations of Culex pipiens.
improves predictive performance, and selecting that optimum
number of trees.
Predictive error is measured as the Bernoulli residual

deviance between the predicted values of the model and
the observed values of the test data. All BRT models are
fitted in R using the ‘gbm’ and ‘dismo’ libraries [38-40].

Target species and occurrence data
Our study area of interest (Figure 1) focuses on an ap-
proximately 5 million square kilometer region of the
MENA that encompasses Egypt, Israel, Lebanon, Syria,
Jordan as well as substantial portions of Turkey, Saudi
Arabia, and Iraq.
The Cx. pipiens complex are the most widely distrib-

uted mosquito species in the world and two biotypes of
Cx. pipiens L. are present in our study area, the anauto-
genous and autogenous biotypes. These mosquito bio-
types breed in overlapping niches and readily hybridize
in areas where they coexist [41]. In Egypt, both autogen-
ous and anautogenous Cx. pipiens individuals were en-
countered in the progeny of autogenous or anautogenous
female parents and more than 75% of field caught females
produced mixed progenies [42].
Cx. pipiens is the most abundant mosquito in Lebanon,

collected both indoors and outdoors. Active and abundant
year round, it is anthropophilic, endophagic, and endo-
phillic [21]. The species is highly behaviorally plastic, while
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Cx. pipiens in the Al Sharqyia governorate of Egypt’s Nile
delta also displays endophagic and primarily anthropophi-
liic behavior [24], mosquitoes in the neighboring gover-
norate have been observed to switch from indoor to
outdoor feeding with seasonal shifts in temperature and
wind speed [43]. Females will feed from a diverse range of
hosts, including horses, cows, sheep, dogs, cats, humans
and rats [23].
Cx. pipiens breeds in water with high organic content

[41]. In Lebanon breeding sites for Cx. pipiens include
containers which range in size from small cans filled
with water to garden pools and irrigation ditches [21]. In
the urban habitat of Cairo, the common breeding habi-
tats for Cx. pipiens are cesspits, drainage canals, springs,
cesspools, and irrigation ditches [22].
Training data from both Egypt and Lebanon were in-

cluded to maximize sampling of the species’ environ-
mental range, from the hot and hyperarid to cool and
subhumid. This range of samples maximizes the combi-
nations of environmental factors used in calibrating the
models, increasing their predictive power [44,45].
Occurrence records for Cx. pipiens were obtained

from previously unpublished vector surveys in Egypt and
Lebanon (Figure 1). Adult samples from Lebanon were
collected in the summer of 2009. Methods included
CDC light traps with a dry ice attractant, and BG-
sentinel traps with pheromone attractant. Traps were
placed in outdoor and indoor habitats at 5 pm and col-
lected the following morning. In addition to adult sam-
pling, larval stages of mosquitoes were sampled in the
summers of 2002 and 2003. Samples were collected by
the classical dipping method using a white tray and/or a
ladle from both artificial and natural breeding sites in-
cluding swamps, ponds, riverbanks, irrigation tanks, and
water storage tanks. Coordinates for sampling locations
were obtained from Google Earth and GPS. Adult speci-
mens were pinned and 4th instar larval specimens were
mounted on slides and identified morphologically using
local and regional identification keys [46]. Occurrence
records from Egypt (Gad, unpublished data) were col-
lected using similar methods as part of a nation-wide
survey.

Environmental layers
We considered twenty-four environmental variables as
potential predictors of Cx. pipiens habitat (Table 1).
Temperature and precipitation were represented by 19
variables of the WorldClim dataset [47]. Quality of vege-
tative cover was described by the standard deviation,
mean, and maximum values of the enhanced vegetation
index (EVI), as derived from Moderate Resolution Image
Spectroradiometer (MODIS) imagery from the Terra
Satellite for 2001. The EVI provides a measure of photo-
synthetic activity or landscape greenness and hence
captures vegetation features such as leaf area, canopy
cover, sugar resources that may provide resting sites and
alternate food sources for this vector species [48-50]. As
available soil water limits primary productivity in the
study region, mean and maximum EVI are generally
correlated with annual rainfall, whereas the standard de-
viation of EVI provides a measure of vegetation season-
ality, which is controlled by a variety of factors including
temperature, day length, insolation, irrigation, and biotic
factors [51]. An additional covariate related to potential
vector breeding habitat was derived from topographic
data, the topographical wetness index (TWI), which de-
scribes the tendency of water to collect in areas of topo-
graphic minima [52]. Because information regarding the
distribution of hosts greatly improves models of mos-
quito distributions [53] and Cx. pipiens is adapted to
breeding and feeding in human-altered landscapes, we
also included human population density as a predictor
using data from Landscan™ 2010. Environmental layers
were gridded to a spatial resolution of approximately
1 km (926.63 m), a scale that captured as much environ-
mental heterogeneity as possible within the limits of
computer processing capability.

Data processing
Presence Data: All point locations recorded as positive for
Cx. pipiens from Egypt (n = 239) and Lebanon (n = 83)
surveys were included as presence locations in all models
(Figure 1).
Background Data: Both boosted regression and max-

imum entropy methods predict areas with a high prob-
ability of presence of conditions suitable for the target
species by comparing the values of environmental pre-
dictors at presence locations to the values of the same
predictors at a set of random “background” locations,
which represent the range of available environmental
values [54]. Because our data, like many presence-only
data sets [55,56], showed a strong bias in sampling ef-
fort, we selected background points with the same geo-
graphical bias as the occurrence data (Additional file 1).
An independent data set of 79 Cx. pipiens locations,

23 from Israel and 56 from Egypt [57], was used to as-
sess accuracy of model predictions (Additional file 2:
Figure S1). These data were used in all Maxent test data
calculations.

Assessing the contribution of human population density
to Cx. pipiens distribution models
Human population density has the potential to be a
strong predictor of Cx. pipiens habitat [53,58]. However,
because the survey locations of the original studies were
all in close proximity to populated areas, population
density is also a strong predictor of sampling effort. To
control for this we ran the entire modeling process



Table 1 Data sources of environmental predictors used in species distribution models

Variable code Data type Date Source res Data source

Bio1 Annual mean temperature 1960-1990 30 arc sec WorldClim1

Bio2 Mean diurnal range 1960-1990 30 arc sec WorldClim1

Bio3 Isothermality 1960-1990 30 arc sec WorldClim1

Bio4 Temperature seasonality 1960-1990 30 arc sec WorldClim1

Bio5 Maximum temperature of the warmest month 1960-1990 30 arc sec WorldClim1

Bio6 Minimum temperature of the coldest month 1960-1990 30 arc sec WorldClim1

Bio7 Temperature annual range 1960-1990 30 arc sec WorldClim1

Bio8 Mean temperature of the wettest quarter 1960-1990 30 arc sec WorldClim1

Bio9 Mean temperature of the driest quarter 1960-1990 30 arc sec WorldClim1

Bio10 Mean temperature of the warmest quarter 1960-1990 30 arc sec WorldClim1

Bio11 Mean temperature of the coldest quarter 1960-1990 30 arc sec WorldClim1

Bio12 Annual precipitation 1960-1990 30 arc sec WorldClim1

Bio13 Precipitation of the wettest month 1960-1990 30 arc sec WorldClim1

Bio14 Precipitation of the driest month 1960-1990 30 arc sec WorldClim1

Bio15 Precipitation seasonality 1960-1990 30 arc sec WorldClim1

Bio16 Precipitation of the wettest quarter 1960-1990 30 arc sec WorldClim1

Bio17 Precipitation of the driest quarter 1960-1990 30 arc sec WorldClim1

Bio18 Precipitation of the warmest quarter 1960-1990 30 arc sec WorldClim1

Bio19 Precipitation of the coldest quarter 1960-1990 30 arc sec WorldClim1

EVIMAX Maximum EVI 2001 250 m MODIS2

EVIMEAN Average annual EVI 2001 250 m MODIS2

EVISD Standard deviation of EVI 2001 250 m MODIS2

Population Population count 2010 30 arc sec Landscan3

TWI Topographical wetness index 2000 90 m GLSDEM4

1WorldClim Global Climate database v1.4, available at :http://www.worldclim.org/ {accessed 28/8/2013}.
2Moderate Resolution Imaging Spectrometer (MODIS), available at: https://lpdaac.usgs.gov/ {accessed 28/8/2013}.
3LandScan (2010)™ High Resolution global Population Data Set copyrighted by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract
No. DE-AC05-00OR22725 with the United States Department of Energy.
4Global Land Survey Digital Elevation Model (GLSDEM), available at: glcf.umd.edu/data/glsdem/ {accessed 28/8/2013} (Input elevation data set to GLSDEM for
study area is Shuttle Radar Topography Mission (SRTM)).
Data sources of environmental predictors used in construction of species distribution models. All layers were gridded to 926.63 m spatial resolution and projected
into the MODIS sinusoidal projection.
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twice; once on the complete set of environmental vari-
ables (N = 24), and once using all environmental variables
except population density (N = 23). Including population
density allows us to examine the relative influence of an
important socioeconomic environmental factor, while ex-
cluding human populations allows us to examine the bio-
physical environmental factors on their own.
To increase the interpretability of the models both pre-

dictor sets were reduced using the ‘gbm.simplify’ function,
which creates BRT models with every possible combin-
ation of the initial predictors, and based on minimizing
predictive error, ranks predictors from most to least influ-
ential, and identifies the optimal predictor set [59].

Creating species distribution models
BRT models using the reduced predictor sets were fitted
using a learning rate of 0.05, a tree complexity of 5, a
bag fraction of 0.75, 10-fold cross validation, and a
Bernoulli loss function. All other parameters were left at
default settings. Predictions in geographic space were
made in R using the “raster” package [60].
Maxent models using the reduced predictor sets were

fit using Maxent v 3.3.3 k [61]. Spatial predictions of the
model were "clamped", a Maxent feature which reduces
the value of the predictions when extrapolating into
areas of parameter space that exceeded the range of
values present in the training data. The final model was
the average logistic output of 10 repetitions of the mod-
eling process. Additional specifics on program specifica-
tions can be found in Additional file 1.

Evaluating and comparing model predictions
Maxent models were evaluated using the area under the re-
ceiver operating characteristic curve (AUC), the corrected

http://www.worldclim.org/
https://lpdaac.usgs.gov/
http://www.glcf.umd.edu/data/glsdem/
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Aikaike information criterion (AICc), and the omission rate.
BRT models were evaluated using AUC, point biserial cor-
relation (COR), and the Bernoulli deviance. Because the
two techniques use different test points for the intrinsic
measures of model performance, the point biserial correl-
ation was also calculated for all models at a common set of
158 points made of the 79 test presence locations and 79
random background points (Additional file 2: Figure S1).
Pearson’s correlation coefficient was used to measure how
closely predictions agreed between the two methods.
Agreement was compared in the “training region”, using
the common 158 points, as well as an “expanded region” of
158 points drawn from the entire model extent (Additional
file 2: Figure S1).

Results
Cx. pipiens habitat suitability
The predicted maps of suitable Cx. pipiens habitat are
presented in Figures 2, 3, 4 and 5. Overall, maximum en-
tropy models predicted a broader distribution of suitable
habitat than boosted regression methods, which pro-
duced much more conservative predictions extent of
suitable habitat and a lower probability of presence.
However, relative suitability of habitats was consistent
between models: areas of highest suitability identified by
BRT were also the areas of highest suitability selected by
maximum entropy.
All four models agree in predicting a moderate to high

probability of Cx. pipiens presence in several distinct
habitats: along the banks of the Nile and throughout
the Nile Delta, throughout the coastal plains of Israel,
Lebanon, and Syria, as well as the valleys of east Lebanon
and along Israel’s Jordanian border (Figures 2, 3, 4, and 5).
In models built using human population data (Figures 2
and 4), habitats with the highest probability of presence
were found near large population centers. Both BRTPop
and MaxentPop models also indicate moderate probability
of presence along the banks of the Tigris and Euphrates
rivers. Models built without population data (Figures 3
and 5) predicted greater probability of presence in the
semi-arid Central Anatolia region of Turkey, the Jazirah
plain in North East Syria and Northern Iraq, and the
marshes of southern Iraq than the population-inclusive
models. However, much of Iraq and Eastern Turkey oc-
cupy a region of environmental space that falls outside the
range of the training data (Additional file 2: Figures S3
and S4), so predictions in these areas should be inter-
preted cautiously.

Model accuracy
Evaluation metrics for Maxent and BRT models are pre-
sented in Tables 2 and 3. Among Maxent models, both
sets of predictors performed well, with AUC values sig-
nificantly greater than the null model. The test AUC
values for both predictor sets were smaller than the
training AUC values, which indicates slight over-fitting
of the models. This difference was smaller for the model
created without population data. The “NoPop” model
also had a higher test AUC value, greater entropy, and a
smaller omission rate than the model that included
population. The population-inclusive model had a lower
AICc than the “NoPop” model.
The boosted regression models also performed well, and

also displayed a degree of over-fitting similar to the Max-
ent models. Among the BRT models, population-inclusive
models performed slightly better than the “NoPop”
models on test data- with higher cross-validated AUC
values, higher cross-validated COR values, and lower cross
validated deviance scores.
When evaluated over a standard set of points, the Maxent

“NoPop” model had the strongest correlation (COR= 0.534)
between model predictions and presence/pseudo-absence,
the BRT NoPop and Maxent population-inclusive model
performed equally well, and the BRT population-inclusive
model had the weakest correlation (COR= 0.413) of the four
models evaluated.

Model agreement
When evaluated over the training region, the predictions
of Maxent and BRT models were very strongly correlated,
with models including population data more closely corre-
lated than models which excluded it (Figure 6). When
evaluated over the entire modeled region, the correlation
between models was weaker.

Contribution of environmental predictors to Cx. pipiens
distribution models
Parameter reduction of the full predictor set (n = 24) re-
sulted in a simplified set of 9 significant predictors.
(Table 4). Parameter reduction of the full predictor set
excluding human population density (n = 23) resulted in
a simplified set of 14 significant predictors (Table 5).
Both modeling techniques selected similar variables as

the most important environmental factors driving spe-
cies distribution. Population was the largest single con-
tributor to model predictions, ranked as most influential
under both BRT (34.9%) and Maxent (60.6%).
In models created without human population density,

the variable with the single largest contribution was the
standard deviation of the enhanced vegetation index
(EVI). Mean EVI was also highly ranked in all models
and all data sets.

Discussion
Model agreement and predictions
Our models showed strong agreement between boosted
regression and maximum entropy methods in selection
of habitat with the highest probability of occurrence of



Figure 2 Maxent Pop. Probability of Culex pipiens presence based on a species distribution model generated using maximum entropy
and a set of environmental predictors (N = 9) including human population density. Habitat suitability has been converted to probability of
presence, assuming a prevalence of 0.5. Bottom: Enlarged to show population centers.
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Figure 3 Maxent No Pop. Probability of Culex pipiens presence based on a species distribution model generated using maximum
entropy and a set of environmental predictors (N = 14) that do not include human population density. Habitat suitability has been
converted to probability of presence, assuming a prevalence of 0.5. Bottom: Enlarged to show population centers.
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Figure 4 BRT Pop. Probability of Culex pipiens presence based on a species distribution model generated using boosted regression
trees and a set of environmental predictors (N = 9) that includes include human population density. Bottom: Enlarged to show
population centers.
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Figure 5 BRT No Pop: Probability of Culex pipiens presence based on a species distribution model generated using boosted regression
trees and a set of environmental predictors (N = 14) that does not include human population density. Bottom: Enlarged to show
population centers.
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Table 2 Evaluation parameters for species distribution models built using human population data

Model Parameters
in final
model

Observed
training
AUC

Observed
test AUC

Null model
training
AUC

Null
model

test AUC

Prevalence Entropy AICc Omission rate3

N = 79
Test COR
(N = 158)

Test
deviance
(N = 158)

Maxent
Pop1

9 0.938 0.872 0.827 ± 0.01 0.450 +/-
0.03

0.151 8.043 8383 0.206 0.470 197.9

Maxent
NoPop2

14 0.916 0.879 0.848 ± 0.01 0.476 +/-
0.04

0.185 8.252 8916 0.194 0.534 178.3

1Data sources used for model development: Bioclim + Vegetation + Population (N = 24).
2Data sources used for model development: Bioclim + Vegetation (N = 23).
3Using equal test sensitivity and specificity threshold. Maxent Pop threshold =0.22, Maxent No Pop threshold =0.34.
Evaluation parameters for Culex pipiens distribution models generated using a set of environmental predictors including human population density (“Maxent Pop”)
and a set excluding human population density (“Maxent No Pop”). Models were built using 322 presence points. “Null Model” parameters represent the average
value of models built from one hundred 322-point dummy data sets. “Test AUC” and “Omission Rate” are calculated from an independent data set of 79 presence
points, not used in training the models. “Test COR” and “Test Deviance” are calculated from a data set that includes the 79 test data points and 79 background
points. “Test COR” = Pearson correlation coefficient.
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Cx. pipiens. High AUC values for all four models indi-
cated that occupancy sites were highly likely to be
assigned a higher probability of presence than back-
ground sites regardless of method. The strong correl-
ation between BRT and Maxent outputs in areas with a
high proportion of known Cx. pipiens habitat indicates
that the models strongly agree on areas of potentially
high risk. These areas included populated areas within
the Nile delta, the valleys of Israel, Lebanon, and Jordan,
and southwestern Saudi Arabia.
Our model predictions are supported by agreement

between predicted areas of highest probability of Cx.
pipiens occurrence, and recent positive vector surveys,
or outbreaks of vector-associated diseases. The regions
of central Israel, predicted by our models to be areas of
high probability of Cx. pipiens presence, corresponded
to the areas of highest incidence of West Nile virus dur-
ing the 2000 outbreak [8]. Likewise, the region of highest
probability of occupancy in Saudi Arabia corresponds
with recent collections of Cx. pipiens [62-64] and the in-
cidence of infection during the 2000 Rift Valley Fever
virus outbreak [65]. The distribution of suitable Cx.
pipiens habitat in Saudi Arabia is of special interest be-
cause of the high potential for repeated import of dis-
eases into the country via large numbers of pilgrims
travelling through for the annual Hajj [66]. The city of
Jeddah has twice been hit by epidemics of dengue dir-
ectly following the Hajj [67]. Our results indicate that
this same area is a suitable habitat for supporting Cx.
Table 3 Evaluation parameters for species distribution model

Model Parameters in
final model

#trees Training AUC CV AUC T

BRT Pop1 9 1550 0.945 0.889

BRT No Pop2 14 3050 0.982 0.864
1Data sources used for model development: Bioclim + Vegetation + Population (N =
2Data sources used for model development: Bioclim + Vegetation (N = 23).
Evaluation parameters for Culex pipiens distribution models generated using booste
population density (“BRT Pop”) and a set excluding human population density (“BRT
10 fold cross validation. “CV AUC” and “CV Deviance” are the area under the curve
and “Test Deviance” are calculated from the predicted model values at 79 independ
points from the same region. “Test COR” = Pearson correlation coefficient.
pipiens, and potentially capable of transmitting West
Nile virus, should it be re-introduced.
Agreement between model predictions was less corre-

lated when evaluated over the full region, including areas
where models were required to extrapolate. This is a
result of the different behavior of each algorithm in
extreme environments [68]. Maxent, when clamped,
extrapolates in a horizontal line from the fit at the most
extreme value in the training data. BRT, which does not
use clamping, extrapolates at a constant value from the
last known site. This difference in extrapolation can also
be seen in the spatial predictions of the population-
exclusive models when predicting into the most dissimi-
lar areas of the modeling region. BRT assigns a higher
relative probability of occupancy to habitat in northern
Iraq and southern Syria, classifying the area with a prob-
ability of occupancy similar to that of the river valley
along the Israel-Jordan border. The Maxent model,
which constrains its predictions more severely, predicts
a much more moderate probability of occupancy. The
same relative over-estimation of the BRT algorithm is not
as apparent in the population-inclusive model, because
the environmental predictor that most exceeds its training
values in this region is temperature seasonality, which was
not as influential a predictor in the population-inclusive
models as it was in the population-exclusive models. The
effect of clamping can still be seen in the population-
inclusive Maxent model. An advantage of using two differ-
ent modeling methods is our ability to detect regions of
s excluding human population data

raining COR CV COR CV deviance Test COR
(N = 158)

Test deviance
(N = 158)

0.663 0.431 0.198 0.413 453.3

0.745 0.361 0.212 0.470 395.8

24).

d regression trees from a set of environmental predictors including human
No Pop”). Models were built using 322 presence points, and evaluated using

(AUC) and Bernoulli deviance evaluated at the withheld dataset. “Test COR”
ent occurrence points not used in training the mode, and 79 background



Figure 6 Correlation between predictions of Culex pipiens distribution models created using boosted regression trees (BRT) and
maximum entropy (Maxent) algorithms. “Training region” consists of 158 points taken from within a similar geographical area to the samples
used building the model, 79 background points and 78 independent occurrence points. “Expanded Region” measures model agreement
throughout the entire modeled extent, and compares values at 158 random points taken with equal probability from the entire model extent.
Left panels describe models built using human population density as a parameter (N = 9). Panels on the right describe models excluding human
population density (N = 14). COR = Pearson correlation coefficient.
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parameter space where choice of the underlying modeling
algorithm has the greatest influence on strength of predic-
tions. Results in these areas need to be interpreted more
cautiously than areas where both models are in agreement.
Presence-only modeling methods, such as those used

in this study, make the assumption that a target species
is equally detectable across all habitats [35]. However, if
sampling detection probability varies with one or more
environmental predictors, our model will not distinguish
Table 4 Contribution of environmental parameters to SDMs i

Parameter BRT variable importance Maxent variable importance

Population 34.9 60.6

EVIMEAN 11.1 7.5

Bio8 9.1 6.1

EVIMAX 8.7 3.5

Bio12 8.4 6.2

EVISD 8.4 11.9

Bio4 7.1 1.2

Bio6 6.7 2.4

Bio7 5.6 0.7

Contribution of environmental parameters (Table 1) to species distribution models
entropy (Maxent) methods.
between habitat with a higher probability of occupancy
and a habitat with greater detectability. Absolute values
of the predictions should be interpreted with caution
with this limitation in mind. Predictions should also be
evaluated with the consideration that presence-only
models treat densely and sparsely occupied sites the
same, as the input data are binary.
In order to efficiently predict species distributions

across the study area, we were required to coarsen the
ncluding human population data

Maxent permutation importance BRT rank Maxent rank

52.8 1 1

0.8 2 3

0.5 3 5

1.0 4 6

3.4 5 4

39.1 6 2

1.3 7 8

0.0 8 7

1.0 9 9

for Culex pipiens generated using boosted regression trees (BRT) and maximum



Table 5 Contribution of environmental parameters to SDMs excluding human population data

Parameter BRT variable importance Maxent variable importance Maxent permutation importance BRT rank Maxent rank

EVISD 16.3 44.7 73.6 1 1

EVIMEAN 14.7 12.6 3.3 2 2

EVIMAX 9.7 7.9 11.3 3 4

TWI* 9.4 2.9 1.9 4 9

Bio4 8.2 1.8 5.5 5 10

Bio10* 5.7 3.1 0.1 6 8

Bio15* 5.0 3.3 1.8 7 7

Bio12 5.0 4.6 0.1 8 5

Bio8 4.9 11.7 0.2 9 3

Bio7 4.7 0.7 0.1 10 13

Bio2* 4.3 0.4 0.5 11 14

Bio6 4.3 3.6 0.5 12 6

Bio5* 4.1 1.6 0.0 13 11

Bio9* 3.7 1.0 1.0 14 12
*Environmental features not utilized in population-inclusive models (Table 4).
Contribution of environmental parameters (Table 1) to species distribution models for Culex pipiens generated using boosted regression trees (“BRT”) and
maximum entropy (“Maxent”) methods.
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resolution of environmental predictors to 1 km. It is im-
portant to keep in mind that this may be a larger than
optimal scale for examining the relationship between
vectors and certain predictors with very fine scale het-
erogeneity [25,69].

Relationship between Cx. pipiens and environmental
predictors
Our study is unique in its aim of identifying the under-
lying environmental predictors driving Cx. pipiens distri-
bution across a climate gradient that encompasses hyper
arid to sub humid habitats. The novel aspects of our
findings are the importance of human population dens-
ity and seasonality of vegetation indices as powerful pre-
dictors of Cx. pipiens occurrence.
Human population density was identified by both

modeling methods as the highest contributing predictor
to habitat suitability. Interpreting this result is complex,
because areas of dense human habitation may be favor-
able to mosquitoes for several reasons. Humans are a
host species, their dwellings also provide a sheltered
resting area, and in rural areas human activities such as
irrigation and agriculture may also provide favorable
breeding habitat and non-human hosts. Breeding condi-
tions for mosquitoes are also favorable in slums, where
high human population density is combined with poor in-
frastructure and inadequate services [70]. Characterization
of mosquito breeding habitat in urban Cairo found that
93.5% of breeding sites were found in slum areas, charac-
terized by incomplete construction, disorganized roads,
and crowded, dense conditions [71]. Socioeconomic
conditions were also significantly related to Cx. pipiens
breeding sites in Washington DC, although in the north-
ern temperate region the relationship was reversed, breed-
ing sites were positively associated with presence of
functional containers, like flower pots and garbage pails,
which were found primarily in areas of higher socioeco-
nomic status [27].
Our results indicate that quality and seasonality of

vegetation is a powerful predictor of Cx. pipiens in arid
and semi-arid habitats. The relationship between Cx.
pipiens occurrence and vegetation quality was strongly
positively associated with the maximum value of the en-
hanced vegetation index (EVI), and negatively associated
with the mean and standard deviation (seasonality) of
the EVI. This suggests that in our study region, high
quality Cx. pipiens habitat consists of areas of high pri-
mary productivity, which maintain that quality of habitat
with very little change throughout the year. In rural
areas of Egypt, year round irrigation maintains precisely
this kind of habitat. Vegetation indices are not always
the most informative predictors in the region, in a study
examining another Cx. pipiens vectored infection, filaria-
sis, the Normalized Difference Vegetation Index did not
distinguish between Egyptian villages at high and low
risk of infection [72]. The positive relationship between
Cx. pipiens and stable areas of high primary productivity
suggested by our results is the opposite of the relation-
ship seen in the forested northeastern United States,
where the most accurate model of Cx. pipiens abun-
dance was negatively correlated with forest cover and
did not include the vegetative index at all [25].
Topographic wetness index has been a significant pre-

dictor of anopheline abundance and malaria risk among
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households in Thailand [73] and Kenya [74,75]. Despite
this, in our models it was a significant predictor only in
the BRT "NoPop" model. It is possible that in arid cli-
mates with low humidity and little rainfall, the potential
for pooling water, as predicted by TWI, does not trans-
late into pools of water with enough frequency to make
TWI a stronger indicator of vector breeding habitat. It is
also possible that, even if TWI does accurately predict
the distribution of pools of clear groundwater in the re-
gion, those pools of clear groundwater may not be the
breeding habitat most favored by Cx. pipiens. In habitats
where mosquitos chose to oviposit more frequently in
artificial or natural containers, rather than ground pools,
this will not be reflected in the TWI. It is also notable
that none of our models found rainfall to be a very
powerful predictor. In this context, the vegetation indi-
ces may provide better information on available soil
moisture than hydrology or rainfall parameters.

Conclusions
Our study provides insight into the drivers of Cx. pipiens
distribution in an understudied region at growing risk
from the re-emergence of several arboviruses. The most
dominant predictors in our species distribution model,
human population density and the seasonality of the en-
hanced vegetation index, are also both environmental
factors with potential correlations with urbanization and
agricultural practices. By understanding the relationship
between these predictors and disease vector distribu-
tions, we gain a better understanding of how changes in
land use or shifting patterns of human settlement might
influence disease transmission. Given the resurgence of
vector borne diseases like West Nile and Rift Valley
Fever [10] understanding how choices may influence dis-
ease ecology through agriculture, urbanization, and
population growth, is a topic of vital importance.
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