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Abstract 

Macroinvertebrate predators such as backswimmers (Heteroptera: Notonectidae), dragonflies (Odonata: Aeshnidae), 
and predatory diving beetles (Coleoptera: Dytiscidae) naturally inhabit aquatic ecosystems. Some aquatic ecosystems 
inhabited by these macroinvertebrate predator taxa equally form malaria vector larval habitats. The presence of these 
predators in malaria vector larval habitats can negatively impact on development, adult body size, fecundity, and lon-
gevity of the malaria vectors, which form important determinants of their fitness and future vectorial capacity. These 
potential negative impacts caused by aquatic macroinvertebrate predators on malaria vectors warrant their consider-
ation as biocontrol agents in an integrated program to combat malaria. However, the use of these macroinvertebrate 
predators in malaria biocontrol is currently constrained by technical bottlenecks linked to their generalist predatory 
tendencies and often long life cycles, demanding complex rearing systems. We reviewed the literature on the use 
of aquatic macroinvertebrate predators for biocontrol of malaria vectors from the An. gambiae s.l. complex. The avail-
able information from laboratory and semi-field studies has shown that aquatic macroinvertebrates have the poten-
tial to consume large numbers of mosquito larvae and could thus offer an additional approaches in integrated 
malaria vector management strategies. The growing number of semi-field structures available in East and West Africa 
provides an opportunity to conduct ecological experimental studies to reconsider the potential of using aquatic 
macroinvertebrate predators as a biocontrol tool. To achieve a more sustainable approach to controlling malaria vec-
tor populations, additional, non-chemical interventions could provide a more sustainable approach, in comparison 
with the failing chemical control tools, and should be urgently considered for integration with the current mosquito 
vector control campaigns.
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Background
Macroinvertebrate predators naturally inhabit aquatic 
ecosystems that form larval breeding habitats of malaria 
vector species of the Anopheles gambiae complex 
(An. arabiensis, An. gambiae s. s., An. coluzzii, An. merus, 
and An.  melas) [1, 2]. The abundance and composition 
of macroinvertebrate predator taxa supported by aquatic 
habitats of the An. gambiae s.l. species complex depends 
greatly on habitat permanency [3]. In West Africa, the 
more permanent larval breeding sites preferred by 
An. coluzzii, for example, support a greater number and 
diversity of macroinvertebrate predators than the tempo-
rary habitats of An.  gambiae s.s. and An.  arabiensis [4]. 
In East Africa, An.  gambiae s.s. preferentially breeds in 
semi-permanent and ephemeral habitats compared with 
larger and permanent habitats such as ponds and streams 
that support a high diversity of macroinvertebrate preda-
tor taxa [5].

The presence of aquatic macroinvertebrate predators in 
larval habitats is known to influence the life-history traits 
of An. gambiae s.l., specifically larval development, adult 
body size, fecundity, and longevity, all of which can affect 
fitness and vectorial capacity [4, 6–9]. Furthermore, the 
selection pressures associated with predation by aquatic 
invertebrates have resulted in important adaptive avoid-
ance mechanisms. For example, An. gambiae s.s. females 
have been shown to avoid laying eggs in water condi-
tioned with backswimmers, Notonecta sp. This may sug-
gest that kairomones associated with predators are shed 
in water that deters female mosquitoes from oviposition 
sites [6, 10]

Since the introduction of dichlorodiphenyltrichloro-
ethane (DDT) in the 1940s, malaria prevention programs 
have relied heavily on chemical control approaches. 
Indoor residual spraying (IRS) of chemicals and insec-
ticide-impregnated bed nets (ITNs) have been the pre-
ferred tools for targeting adult vectors indoors [11–13]. 
However, the effectiveness of these intervention is con-
tinuously being hampered by the rapid emergence and 
spread of resistance to commonly used insecticides in 
mosquito populations [14, 15]. Additionally, the selection 
pressures associated with indoor chemical control meas-
ures have led to an increase in outdoor biting behavior by 
some anopheline mosquito species, and changes in vec-
tor species dynamics [16, 17]. This outdoor biting behav-
ior of some anopheline species aids residual malaria 
transmission.

The spread of insecticide resistance in mosquito pop-
ulations is further thought to be fueled by agricultural 
practices. For example, the increased demand for food 
associated with Africa’s growing population has resulted 
in large areas of intensive rice cultivation coupled with 
heavy chemical pesticide application [18, 19]. The 

expansion of rice cultivations has also created large num-
bers of mosquito larval habitats often near human dwell-
ings. Agricultural chemical pesticides contribute to a rise 
in insecticide resistance among malaria vectors because 
of the prolonged exposure of their immature stages to 
chemicals leaked into the aquatic larval habitats [20–23]. 
These low-specific agricultural chemicals can negatively 
affect natural aquatic mosquito predators even when 
they are directly applied as larvicides [24–27]. For exam-
ple, common larvicides such as insect growth regulators 
(IGRs) and surface films (SFs) were found to be lethal to 
Laccophilus adults (Coleoptera: Dytiscidae) and dragon-
fly nymph at recommended concentrations [28].

Because of those significant challenges there is an 
urgent need for a shift in focus from chemical-based vec-
tor control approaches to integrated approaches tailored 
specifically for local settings. Such approaches can also 
take advantage of the local community knowledge, which 
encourages them to mobilize and directly get involved 
in malaria vector control efforts [29, 30]. Thus, there is 
a renewed interest in larval source management that 
involves community-based application of bio-larvicides 
[31, 32]. Ecologically friendly control approaches that 
employ aquatic macroinvertebrate predators could play 
a role in community-based vector control [33, 34]. Using 
aquatic macroinvertebrate predators would be advan-
tageous because they are a natural component of the 
aquatic ecosystem where immature stages of the malaria 
vector breed [35]. This makes them potentially more 
accessible and affordable to rural communities than the 
expensive ITNs and IRS. Combining aquatic macroin-
vertebrate predators with other vector control methods 
could significantly contribute to a more sustainable long-
term approach to reducing malaria vector populations. 
This is possible because all female mosquitoes, regardless 
of their biting behavior or insecticide resistance profile, 
lay eggs in aquatic larval habitats where macroinverte-
brate predators potentially breed.

Despite these possible advantages that aquatic mac-
roinvertebrate predators can offer in malaria vector con-
trol, no attempts have been made in the past to use them 
for malaria vector control, and they are currently rarely 
used as a biocontrol tool in malaria-endemic countries 
of Africa. This could be attributed to the complexities of 
their life cycle and their generalist tendencies [36–38], 
which make mass-rearing and large-scale deployment 
difficult. Thus, reassessing the possible efficacy of aquatic 
macroinvertebrate predators as biocontrol tools for 
malaria control and understanding the limitations pre-
venting their broader use is critical.

Here, we review the available information on aquatic 
macroinvertebrate predators associated with An.  gam-
biae s.l. larvae habitats and an explain the techniques 
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available to study their preferences. Next, we evaluate 
their potential use as biocontrol agents, as well as limi-
tations and prospects for successful applications. This 
information is critical to identifying the most impor-
tant knowledge gaps in our understanding of the applied 
ecology of aquatic macroinvertebrate predators and in 
applied research required to enable new approaches to 
using aquatic predators for long-term malaria vector 
control.

Techniques for identifying An. gambiae s.l. larval predators
In sub-Saharan Africa, immature stages of An.  gambiae 
s.l. breed in various aquatic habitats ranging from small 
temporary rain pools to larger water pools such as rice 
fields [36, 37, 39, 40]. These habitats contain Planarians, 
Cladocerans, Copepods, and diverse assemblages of 
aquatic insect predators [5, 41–44]. The role that aquatic 
macroinvertebrate predators could play as biocontrol 
agents against An.  gambiae s.l. is fairly established [45–
47]. However, identifying the best predators for effective 
biocontrol against malaria vectors is not a straightfor-
ward task. Studies aimed at demonstrating predation of 
aquatic predators on given prey species generally fall into 
three main categories:

The first category is survey of aquatic habitats, describ-
ing patterns of co-occurrence or co-abundance of 
An.  gambiae s.l. larvae and predatory taxa (Table  1). In 
their most basic form, such surveys are simply lists of 
taxa found in aquatic larval habitats [3, 4]. For example, a 
field survey in Tanzania has shown that order Hemiptera, 
Odonata, and Coleoptera were among the most abun-
dant macroinvertebrate predators in the different malaria 
vector larval habitats along the Mara river [3]. These sur-
veys, in their more elaborate form, may be classified by 
different types of larval habitats and correlate the pres-
ence or abundance of An. gambiae s.l. larvae with that of 
predator taxa within a habitat or different microhabitats, 
sometimes using clustering correlational approaches [5]. 
The main limitation of sampling surveys is that they infer 
potential predation on the basis of patterns of co-occur-
rence or abundance. This is correlative evidence that 
is best supported by studies that directly demonstrate 
prey–predation interactions [48, 49].

Surveys of aquatic macroinvertebrate predators’ gut 
contents can provide important confirmatory informa-
tion on predator–prey preferences in their complex 
natural habitats. Different techniques, such as precipitin 
assays, polymerase chain reaction (PCR), enzyme elec-
trophoresis, and immunological approaches, may be used 
[58, 60–62]. Other techniques using monoclonal and pol-
yclonal antibodies to detect protein epitopes that allow 
for species-level identification of prey have also been pro-
posed [63].

Such approaches have enabled the gaining of insights 
into the prey preferences of many aquatic macroinver-
tebrate taxa. Notably, electrophoretic analyses of the 
gut contents of backswimmers Notonecta glauca and 
N.  virzdis (Notonectidae:Hemiptera) collected from 
Midleton, Ireland, revealed that these predators con-
sumed An. gambiae s.l. as part of their natural diet [64]. 
Precipitin analysis of potential aquatic macroinverte-
brate predators collected in Western Kenya revealed that 
immature Pardosops sp. and Lycosa sp. spiders (Lycosi-
dae) preyed on An. gambiae s.l. [58]. The same approach 
was used in an extensive study of the gut contents of 2295 
aquatic insect predators collected from rice fields, and 
454 from temporary pools and ponds from Kenya. The 
study revealed that Coleoptera, Hemiptera, and Diptera 
were the most important An.  gambiae s.l. larvae preda-
tors [57]. These analyses have limitations because aquatic 
macroinvertebrate predators that metabolize the ingested 
An.  gambiae s.l. larvae quickly enough can be assigned 
false negatives [65]. This most likely contributed to the 
failure to identify some prey from the guts of previously 
studied aquatic macroinvertebrate predators [64]. As a 
result, a more sensitive, species-specific, and less expen-
sive technology that can detect ingested prey several 
hours after predator ingestion is needed.

More recently, progress in molecular biology has ena-
bled the use of polymerase chain reaction (PCR) for 
predation studies, which resulted in improved detection 
thresholds. For instance, an optimized PCR technique is 
shown to detect An. gambiae s.l. ingested by damselflies 
(Lestidae) and dragonflies (Libellulidae) after 1–6  h of 
ingestion [62, 65]. In Mbita, Western Kenya, PCR analy-
ses of the guts of 330 aquatic insect predators revealed 
that dragonflies and damselflies (Odonata) had the high-
est (70.2%) positive rate of An. gambiae s.l., followed by 
water boatman bugs (Hemiptera) (62.8%) and beetles 
(Coleoptera) (18%) [66]. Interestingly, the results of anal-
yses based on a ribosomal deoxyribonucleic acid poly-
merase chain reaction (rDNA-PCR) species diagnostic 
assay suggest that An.  gambiae s.l.’s fourth-instar larvae 
can cannibalize conspecific first-instar larvae [67].

The decreasing costs of genomic approaches imply that 
DNA barcoding may now be used for comprehensive gut 
content analyses. This technique has been used to unravel 
the diet of field-collected An. gambiae s.l. larvae in West-
ern Kenya [68]. Genomic techniques have been used suc-
cessfully to reveal complex predator–prey interactions 
in spiders to understand the above- and below-ground 
food–web dynamics [69]. Therefore, while at the time of 
this review there was little evidence of barcoding analyses 
conducted on macroinvertebrate predators of mosquito 
larvae, prospects suggest that this tool will further facili-
tate gut content analysis studies. Gut content analyses are 
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a powerful approach for demonstrating predatory inter-
actions, however, they are dependent on sample sizes 
and power, the simultaneous presence of predators and 
mosquito prey in the sampled study area, and the rate 
of DNA degradation inside the predator’s gut. Although 
the gut content analyses approach is useful for incrimi-
nating the most common predators, such genomic stud-
ies are still comparatively costly, which may prevent the 
extensive longitudinal and horizontal sampling needed to 
fully unravel prey–predator networks across the different 
types of An. gambiae s.l. larval habitats.

Finally, predation experiments can establish whether 
a predatory taxon, previously identified through habitat 
and/or gut surveys, can effectively prey on An. gambiae 
s.l. larvae. These studies can also usefully complement 
gut content analyses by comparing different predator 
types and their consumption rates, or they may establish 
a relationship between prey size and their consumption 
rates [5, 51, 70, 71]. For example, semi-field experiments 
conducted in the Western Kenya highlands demon-
strated that backswimmers (Notonectidae) were more 
effective predators of An. gambiae s.s. third-instar larvae 
and pupae than dragonfly nymphs (Libellulidae) or water 
scorpions (Belestomatidae) [45]. In semi-field studies in 
coastal Kenya, comparisons of predation rates on Anoph-
eles larvae by five sympatric predatory taxa again showed 
that backswimmers consumed the most mosquito larvae, 
followed by water measurers/mash treaders (Hydrom-
etridae), water striders (Gerridae), broad-shouldered 
water striders (Veliidae), and diving water beetles (Dys-
ticidae) [72]. Whilst valuable, the results of experimental 
predation experiments may not reflect predation rates in 
the natural setting, where prey consumption may be con-
strained by availability and a variety of other abiotic and 
biotic factors.

Potential aquatic macroinvertebrate predators for use 
as a biocontrol agents
A few insect taxa have emerged as prime candidates for 
use in biocontrol on the basis of evidence from the vari-
ous approaches for identifying the most important pred-
ators of the African malaria mosquito described above. 
In sequential order of their importance, these are Odo-
nata, Coleoptera, Hemiptera, and Diptera aquatic insects 
(Table 1).

Odonata is among the most effective aquatic mac-
roinvertebrate predators of An.  gambiae s.l. larvae. For 
example, during 1973 field surveys in Kenya, a precipitin 
test on the gut content of potential aquatic macroinver-
tebrate predators sampled from small pools and ditches 
revealed that dragonflies and damselflies nymphs preyed 
on An. gambiae s.l. larvae [58]. Conversely, five out of the 
nine Odonata species, Agriocncmis inversa, Crocothemis 

etythraea, Pantala flavescens, Ischnura senegatensis, and 
Brachythemis lacustris, sampled from the same location, 
tested positive for An.  gambiae s.l., with Ischnura sene-
gatensis dominating with 47.7% of positives [57]. The bio-
control efficacy of dragonfly nymphs Brachytron pratense 
against mosquito larvae Anopheles subpictus was demon-
strated through a predation experiment conducted using 
3 L water containers. The dragonfly Brachytron pratense 
nymphs consumed an average of 66 An. subpictus’ fourth-
instar larvae during a 24-h study period [73]. When the 
experiment was conducted under field conditions in the 
deeper 300L concrete water tanks, a significant decrease 
in the An. subpictus larval density was observed 15 days 
after the introduction of ten B.  pratense nymphs [73]. 
The nymphs’ impact was further demonstrated, as the 
density of mosquito larvae significantly rebounded upon 
their removal [73]. In a PCR-based study focusing on 
gut contents of 330 aquatic macroinvertebrate predators 
sampled from six wetlands near Lake Victoria in Mbita, 
Western Kenya, 54.2% of the samples were found posi-
tive for An. gambiae s.l., and the Odonata had the highest 
average rate compared with other predatory orders with 
70.2% positives [66].

Coleoptera also comprises important families of 
aquatic macroinvertebrate mosquito larvae predators 
[74]. Field surveys and gut content analysis demonstrated 
that some Coleoptera families, including the com-
mon Dytiscidae, co-exist and prey on An.  gambiae s.l. 
(Table 1). Interestingly, adult diving beetles can fly from 
one aquatic habitat to another, and both adult and imma-
ture stages feed on mosquito larvae, thus making them 
particularly attractive predators [37, 74, 75].

The order Hemiptera contains taxa such as back-
swimmers (Notonectidae) that are also consid-
ered highly efficient predators of An.  gambiae s.l. 
larvae [51]. Indeed, a semi-field study in Western 
Kenya showed that the backswimmer species, Anisops 
debilis (Notonectidae), is a more effective preda-
tor of An.  gambiae s.l. larvae than other locally avail-
able Hemiptera predator species such as Micrivelia 
sp. (Veliidae), Hydrometra sp. (Hydrometridae), Ger-
ris hypolence (Gerridae), and predacious diving beetle 
Hydrovatus cribratus (Dytiscidae) [72]. In a laboratory 
study conducted at Jimma University using aquatic 
macroinvertebrate predators collected from the Gilgel 
Gibe watershed, southwest Ethiopia, backswimmer 
(Notonectidae) was the most aggressive predator, with 
71.5% daily mean predation on An.  gambiae s.l. lar-
vae compared with Dytiscidae, 67% [51]. In a separate 
semi-field study using field-collected aquatic macroin-
vertebrates from the same location [51], 89% of the 
belostomatids (Hydrocyrius) consumed An.  arabiensis 
larvae placed in the artificial habitat compared with 
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64% of notonectids (Notonecta, Anisops and Enithares) 
and 56% of corixids (Agraptocorixa, Micronecta, Sigara, 
and Trichocorixa), respectively [70].

Taxa such as the dipterans also comprise promising 
candidate biocontrol agents. Mantis shore fly species, 
such as Ochthera brevitibialis and chalybescens, have 
been shown to prey on anopheline mosquito larvae and 
can reduce their populations locally [76, 77]. In deeper 
water, these species can easily catch anopheline larvae, 
whereas culicines can easily escape [76]. In predation 
experiments, the predatory shore fly Ochthera chalybe-
scens preys on all stages of An.  gambiae s.l., except for 
eggs [77]. In contrast to backswimmers, the efficiency of 
shore fly predation on An. gambiae s.l. was not affected 
by water surface/volume [51].

Cannibalism between mosquito species is also pos-
sible. Aside from the well-known mosquito taxa, Culex 
toxorhynchites species and Culex tigripes, whose larvae 
preferentially prey on mosquito larvae [78–80], there 
are scenarios where larvae of other mosquito taxa feeds 
on the dead larvae of other taxa. For example, when the 
third-instar An.  gambiae s.s. larvae were placed in the 
same artificial habitat as the first-instar Cx. quinquefas-
ciatus larvae and left to interact for some time, DNA of 
Cx. quinquefasciatus was detected in the An. gambiae s.s. 
gut content and vice versa [81]. A small number of dead 
first-instars were discovered in the controls, implying 
that some larvae in the treatment group were consumed 
after they died [81]. These findings imply that intraguild 
predation between the two species is common and that it 
is a voluntary process that is not triggered by food scar-
city [81]. Interestingly, there is evidence that An. gambiae 
s.l. engages in intraspecies cannibalism. In laboratory 
experiments, the fourth-instar An.  gambiae s.l. larvae 
were video-recorded cannibalizing eggs and large num-
bers of newly hatched first-instars [82].

Apart from aquatic insects, several spider families 
(Tetragnathidae, Lycosidae, Pisauridae, and Trecha-
leidae) prey on An.  gambiae s.l. larvae in and around 
aquatic habitats [83]. To catch their prey, predatory spi-
ders employ a variety of strategies. Those that prey on 
mosquito larvae, for example, are active hunters who 
do not build webs. These spiders are typically semi-
aquatic, surface film locomotors, or deep divers [43]. 
Notably, semi-aquatic surface film locomotors such as 
Dolomedes triton (Pisauridae, Araneae) are active mos-
quito larvae predators [84]. Another active anopheline 
mosquito predator is Argyroneta aquatica, which hides 
inside a bell-shaped nest made of silk and submerged 
aquatic plants [85]. This spider species prefers hunt-
ing Anopheles over Culex larvae, regardless of the body 
size differences [85]. Although the intensity of spider 
predation may be low, a laboratory experiment has 

shown that a family such as Lycosidae consumes more 
than 84% of mosquito larvae in an artificial habitat of 
2 × 1 × 4  m3 [86].

Other aquatic macroinvertebrate predators with bio-
control potential against An. gambiae s.l. larvae include 
crustaceans and planarians. For instance, Copepod, 
Mesocyclops sp. and An. albimanus mosquito larvae 
have been found to have a strong negative association 
in many ponds and small water bodies [87, 88]. Addi-
tionally, field trials in temporary pools, marshes, and 
rice fields have shown that copepods, Mesocyclops, can 
eliminate mosquito larvae, including An.  gambiae s.l., 
provided the right species is introduced to the right 
habitat at the right time [89]. Copepods, like all aquatic 
predators, are generalists, which limits their effective-
ness as a potential biocontrol tool. Mesocyclops ther-
mocyclopoides, for example, prey on An.  stephensi but 
prefer to feed on cladocerans when both are available 
[90].

Among the planarians, mesostoma is the most widely 
distributed and important mosquito larvae predator in 
small water bodies [91, 92]. Laboratory observations of 
some Mesostoma spp. collected from shallow aquatic 
habitats have revealed a wide variety of prey-killing 
mechanisms including mucus trapping, sit-and-wait pre-
dation, toxin release into water, and active searching [93, 
94]. Mesostoma spp. was found to significantly reduce 
mosquito populations in plastic bowls during field exper-
iments in residential areas [92]. During the dry season, 
the mosquito population was reduced to a mean of 352 
(range 67–527) in the plastic bowls in 151 days, while the 
control group had only 93 (range 2–21) at the end of the 
same period. The feeding rate of 100 adult Mesostoma 
spp. on fourth-instar mosquito larvae is 10–12 mosqui-
toes per day, with the highest rate being 14 larvae per day 
[92]. The Asian planaria Dugesia bengalensis (Triclad-
ida: Dugesiidae) is thought to be an effective predator of 
An. gambiae s.l. larvae. In a laboratory study, two batches 
of each of three large Petri dishes measuring 6 × 1   m3 
were used, each containing 5–7  days starved matured 
planarians, and 50 Anopheles mosquito eggs, larvae, and 
pupae were exposed to the planarians of the first batch 
separately, with hourly observations, D.  bengalensis was 
shown to consume An. gambiae s.l. larvae, though their 
predation rates decrease with time [95]. Turbellarians 
play an important role as predators in ephemeral ponds 
because their eggs can survive dry periods [93]. Planar-
ians are therefore an excellent candidate for inclusion in 
malaria biocontrol programmes.

Therefore, there is sufficient evidence from field sur-
veys backed by feeding experiments that several taxa of 
aquatic macroinvertebrate predators can potentially be 
used as biocontrol agents against malaria vectors.
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Mosquito population control trials
The assessment of a predator’s larval predation efficacy in 
the field is a critical step toward its use in biocontrol. Sev-
eral large-scale experimental studies have been carried 
out to assess whether aquatic macroinvertebrate preda-
tors could be used for future malaria vector biocontrol.

As discussed above, the Odonata comprises several 
promising taxa for use as biocontrol agents for reduc-
ing malaria vector populations. This is because their 
nymph and adult life stages feed voraciously on larvae 
and adult mosquitoes. For instance, dragonflies and dam-
selflies feed on both larvae and airborne adult mosqui-
toes [96]. A field study conducted at the Legon campus 
in Ghana revealed that an odonatan species, Bradino-
pyga strachani, can colonize concrete open containers 
of 120 × 60 × 40  cm3, and their presence decreases Culex 
and Aedes mosquito populations [71]. A successful pro-
ject in Panama used indigenous dragonflies and damsel-
fly naiads in water-filled tree holes to reduce the number 
of Aedes, Anopheles, and Culex species [97]. In Myanmar, 
a 2–6 month period of augmentative release of predatory 
larvae of a dragonfly, Crocothemis servilia, suppressed 
the larval and adult populations of Ae.  aegypti by 96% 
[98]. After 15 days in semi-field conditions, five coexist-
ing odonate species, Aeshna flavifrons, Coenagrion kash-
mirum, Ischnura forcipata, Rhinocypha ignipennis, and 
Sympetrum durum, significantly reduced Cx.  quinque-
fasciatus larval densities in India, and when the odonate 
nymphs were removed after 15 days, the mosquito larval 
density rebounded significantly [99]. A pilot field study 
conducted in Maine, northern USA, used readily avail-
able predatory larvae of a dragonfly, Cwcothemis ser-
vilia, and revealed that this species could suppress Aedes 
aegypti populations to a very low level during the rainy 
season [98]. In the northern USA, dragonfly nymphs can 
be purchased for biological control and they are typically 
supplied from Massachusetts and North Carolina [100]. 
Similar attempts are yet to be conducted in Africa, where 
malaria is endemic despite the artificial rearing of these 
predators and releasing in mosquito larval breeding sites 
being considered an appropriate measure for mosquito 
population reduction [96].

Copepods, for example, are promising biocontrol 
agents for mosquito population reduction due to their 
high reproductive rate [90]. Copepods such as Meso-
cyclops thermocyclopoides significantly reduce Aedes, 
Anopheles, and Culex larval populations [90]. In the case 
of Aedes mosquitos, there is systematic evidence for the 
effectiveness of copepods in dengue vector control [101]. 
The introduction of Mesocyclops woutersi, M. thermocy-
clopoides, and M. pehpeiensis into all wells, cement water 
storage tanks, and ceramic jars with average capacities 
of 2700 and 27  L, respectively, in Phanboi, Vietnam for 

12  months resulted in a 97% decrease in Aedes aegypti 
population [89]. The predatory efficacy of the copepod 
species Mesocyclops longisetus collected in and around 
Erode, Tamil Nadu, India, was investigated in laboratory 
and field studies against the malarial vector An. culicifa-
cies, and their effective predation on first-instars and sec-
ond-instars were 47% and 36%, respectively, compared 
with 3% and 1% on third- and fourth-instars, respectively 
[102]

Notostracan tadpole shrimp is another macroinverte-
brate predator taxon with a biocontrol potential against 
An.  gambiae s.l. because they are adapted to ephemeral 
aquatic habitats and rice paddy fields, the An.  gambiae 
s.l.’s preferred breeding habitats [59, 103]. Between 1957 
and 1959, the reared and released crustacean species 
Triops granaries reduced the population of An. gambiae 
s.l. larvae in temporary breeding habitats around huts in 
Mirrich village, Somalia [59].

Toxorhynchites mosquito larvae are predators of other 
mosquito larvae with whom they share a habitat [104]. 
While this genus is found throughout the tropics, its 
efficacy as a biocontrol agent against malaria vectors 
An.  gambiae s.l. in Africa remains to be tested. Aedes 
aegypti larval populations were suppressed by predatory 
Toxorhynchites moctezuma mosquito larvae released 
systematically in the Caribbean Island of Saint Vincent 
and the Grenadines. After 5 months of sustained preda-
tor release, all the Ae. aegypti indices were lower in the 
treated village than in the untreated villages [105].

All of these suggest that, in addition to the currently 
known control interventions, aquatic macroinvertebrate 
predators could be used as a supplementary biological 
control tool to reduce malaria vector populations. How-
ever, data on larger field trials using aquatic macroin-
vertebrate predators as biological control tools against 
An.  gambiae s.l. and other important vector species are 
scarce probably due to limited funding, yet larger inter-
ventions would bring important information about scal-
ability. Field experiments are urgently needed to confirm 
the potential of aquatic macroinvertebrates as a biologi-
cal tool in the control of malaria vectors at a larger scale.

Using predator kairomones to deter ovipositing 
An. gambiae s.l.
Kairomones are “allelochemicals produced, acquired, or 
released as a result of an organism’s activities that, when 
it comes into contact with an individual of another spe-
cies in the natural environment elicits in the receiver a 
behavioral or physiological reaction that is adaptively 
beneficial to the receiver but not to the emitter” [106]. A 
large portion of an insect’s behavior is mediated by infor-
mation derived from chemicals in its environment, which 
can act as attractants or repellents [107]. Kairomones, for 
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example, play a role in mosquito attraction and sexual 
partner selection, as well as mediating communication 
within and between insect taxa [108, 109].

Knowledge of insect behavior can be used to develop 
long-term control strategies for disease vectors. For 
example, the exploitation of a kairomonal attraction to 
host odors resulted in the development of traps that use 
info-chemicals such as carbon dioxide  (CO2), lactic acid, 
ammonia, carboxylic acids, and 1-Octen-3-ol to trap 
host-seeking insects [108–110]. Thus, it has been demon-
strated that An. gambiae s.l. and An.  funestus are highly 
attracted to traps baited with host-derived semiochemi-
cals [10].

Several aquatic macroinvertebrate predator taxa share 
An.  gambiae s.l.’s larval habitats [45, 66]. The predators 
shed kairomones in the aquatic larval habitats, which can 
elicit a variety of behavioral responses from mosquitoes, 
including female mosquito oviposition site avoidance, 
and also negatively affect the life history traits of the 
offspring, such as delayed larval development, reduced 
body size, and survival of the emerged adults [110–112]. 
A laboratory study in Kenya has demonstrated that 
An. gambiae s.s. lay fewer eggs in water conditioned with 
backswimmers Notonecta sp. compared with uncondi-
tioned water [6]. In a rice field experiment, An. gambiae 
s.l. larvae were not commonly seen in borrow-pits inhab-
ited by backswimmers (Notonectidae) [93]. Similarly, 
backswimmer Notonecta maculata repelled ovipositing 
Culiseta longiareolata and Culiseta longiareo females in 
outdoor and laboratory experiments with An.  gambiae 
s.s., respectively [6, 111, 113]. Thus, different mosquito 
species may respond similarly to deterring kairomones 
from similar predator taxa potentially to avoid predation 
risk on their offspring. Differences in larval avoidance 
responses to kairomones produced by larval predation 
are also thought to be the cause of habitat divergence 
between An. gambiae s.s. and An. coluzzii [40, 41].

Chemical cues undoubtedly play an important role in 
selecting oviposition sites, and when used properly, may 
provide promising results in mosquito population con-
trol. Currently, well-known kairomones mediating female 
mosquito oviposition behavior that have been used as 
an attractant baited with insecticides to control malaria 
vector population come primarily from aquatic plants, 
algae, and bacteria [101, 114]. Despite the enormous 
laboratory and field studies that demonstrate the role of 
aquatic macroinvertebrate kairomones in repelling gravid 
female mosquitoes from oviposition sites, very little is 
still known on the chemical compound profile emitted by 
many promising predators, e.g., backswimmer Notonecta 
sp., diving beetles, and dragonfly nymphs, limiting the 
use of their kairomones as a vector control tool against 
malaria vectors. The predator kairomones can be used as 

a malaria vector control tool in a push (deterrence)–pull 
(insecticide-baited attractant) approach [115, 116]. The 
discovery of attractant and repellent compounds derived 
from aquatic macroinvertebrate predators that could 
potentially be used for malaria vector control would 
open completely novel new research avenues. As a result, 
future research should concentrate on identifying spe-
cific volatile compounds released by macroinvertebrate 
predators that have the potential to be used in a push–
pull strategy to control malaria vector populations [117].

Bottlenecks limiting the use of aquatic macroinvertebrate 
predators as biocontrol tool
Knowledge gaps in ecology
Biocontrol by macroinvertebrate predators is likely to 
be the most cost-effective when An.  gambiae s.l. larval 
breeding sites are present, and larvae are developing in 
some numbers. Planning effective interventions therefore 
requires gathering important basic knowledge on rainfall 
seasonality, the resulting distribution of aquatic habitats, 
and the extent of overlaps between aquatic macroinverte-
brate predators, the targeted prey species, and alternate 
food sources. Baseline longitudinal studies that include 
the identification of areas with high densities of water 
bodies and sampling of mosquito larvae, among other 
prey, are therefore crucial to the implementation of aug-
mentative release of predators in target habitats. Aquatic 
macroinvertebrate predators tend to be more common 
in more stable and larger water bodies, but different 
taxa vary in their preferred habitats [5, 118]. Further-
more, An. gambiae s.l. larvae were shown to be particu-
larly abundant in small temporary water pools where 
fewer aquatic predators are present [5, 119]. Targeting 
this species would therefore require using adult preda-
tors actively searching smaller temporal larval habitats 
for prey, or developing a method for effectively detecting 
smaller larval habitats, or treatment with the egg or larval 
stages of predators. In addition, creating stepping stones 
from which these predators can colonize or reach these 
temporal water bodies would also be beneficial. Either 
of these approaches requires gaining an in-depth knowl-
edge of the local ecology and dynamics of both prey spe-
cies and the predators to be considered for biocontrol. 
At present this knowledge is far too sparse to envisage 
the modeling exercises required for planning interven-
tions effectively and estimating their likely impact on 
transmission.

Rearing and production challenges
Difficulties associated with rearing aquatic macroinver-
tebrate predators under captivity have been cited as one 
of the limiting factors for their adoption as a biocontrol 
tool against malaria vectors. Rearing aquatic predators is 
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typically complicated by the fact that many species read-
ily cannibalize conspecifics when given the opportunity, 
and this constrains the design of rearing procedures [120, 
121]. Another level of complexity stems from their often 
complex holometabolous life [122, 123]. For instance, the 
long and complex lifecycle of the dragonflies (8–17 lar-
val instars depending on species) makes them both diffi-
cult to rear, and, in the field, slows down their population 
response to malaria vector dynamics [124–126]. Some 
species, such as the Asian dragonfly Bradinopyga gemi-
nata, could not be reared in captivity to adulthood [98, 
127, 128]. In America, an attempt to rear the backswim-
mer Buenoa scimitra for controlling Cx. quinquefasciatus 
partially failed due to difficulties in establishing similar 
natural field conditions in the rearing facilities [129]. 
However, another study reported that the eggs from that 
species could be stored for 263 days, and newly hatched 
individuals successfully grew to the adult stage, thereby 
enabling mass-rearing for the control of Cx. quinquefas-
ciatus [130]. This example highlights the fact that many 
rearing and production challenges could be overcome 
provided enough resources in applied research are avail-
able. Despite the slowdown in chemical control efficacy, 
the focus on, and funding of, biocontrol research remains 
limited. In most cases, mass-rearing of macroinvertebrate 
predators is attempted with limited resources on the back 
of small projects and budgets. Therefore, the scope for 
trial and error and technological investments is similarly 
limited and thus the current understanding of the condi-
tions influencing predator quality and performance in the 
field remains [131]. More resources are therefore needed 
to conduct the semi-field and field experiments needed to 
establish and optimize the rearing methodologies for the 
most promising aquatic macroinvertebrate predator taxa. 
It is paramount for these predators to be evaluated as 
biocontrol agents in larger trials, leading to their poten-
tial approval as additional tools against malaria vectors.

Challenges in integration with chemical vector control
Depending on its scale and intensity of implementation, 
biocontrol of larval stages of malaria vectors through 
natural predators could potentially be a cheap and simple 
approach to implement [3]. The local rearing and distri-
bution of predators would perfectly fit the current agen-
das of sustainability and community-based approaches, 
as these would establish local knowledge-based skills 
and jobs, and result in intervention that can usefully 
complement the World Health Organization (WHO)-
recommended governmental-run ITN distributions and 
IRS spraying programs. However, the effective integra-
tion of macroinvertebrate predators with such core vec-
tor control as an intervention raises several practical 
questions. For instance, all insecticide classes, including 

the pyrethroid class used in mosquito control, are toxic 
to all insects and could potentially affect the adult stages 
of Ephemeroptera, Trichoptera, Hemiptera, Plecoptera, 
and Coleoptera used in biocontrol [132–135]. This is 
compounded by the fact that while mosquitoes develop 
stronger insecticide resistance in response to more pow-
erful vector control formulations, the susceptibility of 
insect predators’ populations may remain high. Thus, 
currently used pesticides may reduce natural mosquito 
predator populations more effectively than target mos-
quitoes, and predators may die out over time [136]. 
Another issue stems from the leaking of pesticides used 
for vector control into rain water and aquatic habitats 
[137]. This and other sources of pesticides and contami-
nants associated with human activities associated with 
agriculture (pest control, herbicide, and fertilizing) may 
render aquatic habitats unsuited for aquatic predators. 
Thus, the loss of aquatic diversity associated with vari-
ous human activities negatively affects natural mosquito 
larvae predator populations and could also constrain the 
use of aquatic macroinvertebrate predators as a biocon-
trol tool for malaria vector population suppression. An 
altenative approach would consist of using Bti instead of 
chemicals in integrated approaches using macroinverte-
brate predators. However, to inform the design of a sus-
tained integrated malaria vector control approach, it is 
necessary to investigate the effect of other vector control 
tools and other aquatic pollutant-generating activities on 
macroinvertebrate predators.

Conclusions
Since the artificial mass-rearing of the aquatic macroin-
vertebrate predators and deployment to aquatic mos-
quito larval breeding habitats could be an ideal approach, 
we envisage that this may be a short term-solution con-
strained by insufficient labor and funds. Most of the 
aquatic macroinvertebrate predators of mosquitoes 
thrive in larger aquatic water bodies with short grasses 
for egg-laying and refuge during vulnerable stages from 
other predators. Highly effective aquatic macroinverte-
brate predators of mosquitoes such as dragonflies, pre-
dacious diving beetles, and damselflies can fly across 
aquatic larval habitats to search for prey. We recommend 
that the naturally occurring water bodies with grasses 
that naturally sustain high populations of these should be 
conserved to allow for multiplication and reproduction 
of these predators for long-term suppression of mosquito 
population in addition to other control strategies.
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