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vector Triatoma infestans increases 
with surrounding green vegetation and social 
vulnerability in the Argentine Chaco
Dario E. Elias1,2*, Marta V. Cardinal1,2, Natalia P. Macchiaverna1,2, Gustavo F. Enriquez1,2, Ricardo E. Gürtler1,2 and 
M. Sol Gaspe1,2* 

Abstract 

Background Chagas disease, caused by Trypanosoma cruzi, is still a public health problem in Latin America 
and in the Southern Cone countries, where Triatoma infestans is the main vector. We evaluated the relationships 
among the density of green vegetation around rural houses, sociodemographic characteristics, and domestic (re)
infestation with T. infestans while accounting for their spatial dependence in the municipality of Pampa del Indio 
between 2007 and 2016.

Methods The study comprised sociodemographic and ecological variables from 734 rural houses with no missing 
data. Green vegetation density surrounding houses was estimated by the normalized difference vegetation index 
(NDVI). We used a hierarchical Bayesian logistic regression composed of fixed effects and spatial random effects 
to estimate domestic infestation risk and quantile regressions to evaluate the association between surrounding NDVI 
and selected sociodemographic variables.

Results Qom ethnicity and the number of poultry were negatively associated with surrounding NDVI, whereas 
overcrowding was positively associated with surrounding NDVI. Hierarchical Bayesian models identified that domes-
tic infestation was positively associated with surrounding NDVI, suitable walls for triatomines, and overcrowding 
over both intervention periods. Preintervention domestic infestation also was positively associated with Qom ethnic-
ity. Models with spatial random effects performed better than models without spatial effects. The former identified 
geographic areas with a domestic infestation risk not accounted for by fixed-effect variables.

Conclusions Domestic infestation with T. infestans was associated with the density of green vegetation surrounding 
rural houses and social vulnerability over a decade of sustained vector control interventions. High density of green 
vegetation surrounding rural houses was associated with households with more vulnerable social conditions. Evalu-
ation of domestic infestation risk should simultaneously consider social, landscape and spatial effects to control 
for their mutual dependency. Hierarchical Bayesian models provided a proficient methodology to identify areas 
for targeted triatomine and disease surveillance and control.
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Background
Chagas disease, caused by Trypanosoma cruzi, is a 
neglected tropical disease and one of the major vector-
borne diseases in Latin America, affecting 6 million peo-
ple [1]. Triatoma infestans is the main vector of T. cruzi 
in the Southern Cone countries and has been the target 
of an insecticide-based regional elimination program that 
interrupted vectorial transmission to humans in vari-
ous countries [2, 3]. However, in the Gran Chaco ecore-
gion, domestic vector-borne transmission of T. cruzi still 
occurs, albeit with lower incidence levels than 20  years 
ago [4].

Domestic infestation with triatomines is strongly asso-
ciated with ecological and sociodemographic features. 
Ecological risk factors related to infestation have exten-
sively been explored, whereas social aspects have been 
studied to a lesser extent [5]. Residential overcrowding, 
household educational level, wall building materials and 
indoor presence of poultry and dogs were main deter-
minants of house infestation in different settings [6–9]. 
These factors lay in the intersection between the social 
and ecological domains and may be considered proxies of 
social disparities.

The transmission of T. cruzi encompasses widely het-
erogeneous eco-epidemiological scenarios across the 
Americas, from sylvatic triatomine species invading 
domiciles to highly domiciliated species [10, 11]. There-
fore, the association between house infestation and the 
surrounding environment has yielded different results. 
For domiciliated vectors, such as T. infestans in Argen-
tina, Cardozo et  al. [12] showed that house invasion by 
triatomines was more frequent in isolated houses located 
near forest fragments within disturbed landscapes. Wein-
berg et al. [13] showed that clusters of houses with high 
domestic infestation with T. infestans had greater forest 
coverage and smaller cultivated areas than zones with 
low domestic infestation. The normalized difference 
vegetation index (NDVI), which is widely used to esti-
mate green vegetation density based on satellite images 
[14], was positively associated with domestic or house 
infestation with T. infestans at the department and coun-
try levels [15–17]. Different causal pathways have been 
hypothesized regarding the association between the 
surrounding vegetation of houses and domestic infesta-
tion, such as that the surrounding vegetation could offer 
greater availability of refuges to triatomines or that the 
occurrence of more dispersed houses could favor the 
attraction of dispersing triatomines by artificial lights 
[12, 18]. However, social characteristics could play a rel-
evant role in the association between the risk of infesta-
tion and environmental characteristics; for example, the 
risk attributed to living isolated in the vicinity of forest 

fragments could also be related to the social vulnerability 
in which marginalized families live.

Few studies integrated NDVI, as a surrogate of veg-
etation cover, and sociodemographic data in relation 
to house infestation with triatomines. King et  al. (2011) 
[19] reported domestic infestation with Triatoma dimid-
iata was associated with surrounding mean NDVI and 
house walls of palm and straw in Jutiapa, Guatemala. 
By contrast, Brito et  al. [20] found a negative associa-
tion between house infestation with Rhodnius neglec-
tus and NDVI values adjusted for municipality-level 
socioeconomic indices in Tocantins, Brazil. Gonçalves 
et  al. [21] revealed that NDVI values adjusted for soci-
odemographic characteristics at the census tract level 
were positively related to the occurrence of triatomines 
in northern Minas Gerais, Brazil. However, the envi-
ronmental scenarios and the ecological features of the 
main triatomine vector in the Argentine Chaco, mainly 
its degree of domiciliation and the virtual absence of syl-
vatic foci, are different from those addressed in the afore-
mentioned studies. Therefore, the causal and non-causal 
hypotheses of the association among green vegetation, 
sociodemographic characteristics and triatomine infesta-
tion in this region would probably follow different path-
ways that deserve further research. To our knowledge, no 
study has simultaneously analyzed NDVI surrounding 
houses and sociodemographic data at the household level 
involving T. infestans throughout its distribution range.

This study is part of an ongoing research and control 
program on the eco-epidemiology of Chagas disease 
in the municipality of Pampa del Indio (Chaco prov-
ince, Argentina) initiated in 2007. A series of district-
wide interventions achieved the quasi-elimination of 
T. infestans [22] and the virtual interruption of vector-
borne transmission of T. cruzi at the municipality-wide 
level [23, 24]. House infestation in operational areas 
within Pampa del Indio was associated with residential 
overcrowding, household educational level, Qom ethnic-
ity, domestic insecticide use and mud walls [7, 25, 26]. In 
the current study, using a hierarchical Bayesian frame-
work that allows for the spatial features of the processes 
involved, we modeled the relationship among the occur-
rence of domestic (re)infestation with T. infestans, green 
vegetation density surrounding rural houses (estimated 
by NDVI) and selected household sociodemographic 
characteristics over a 10-year period. A key aspect of this 
study is the inclusion of the spatial component, as sev-
eral studies have rejected the hypothesis of spatial inde-
pendence of house infestation with triatomines [16, 27, 
28]. Based on empirical evidence collected in northern 
Argentina [7, 17], we hypothesized that disadvantageous 
sociodemographic characteristics (e.g. overcrowding) 
and higher NDVI surrounding houses were directly 
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associated with a higher risk of domestic infestation with 
T. infestans. Second, we hypothesized that the surround-
ing NDVI of houses was associated with household soci-
odemographic characteristics.

Methods
Study area
The Gran Chaco ecoregion comprises two regions: the 
humid Chaco, composed of tropical grasslands, savannas 
and shrublands, and the dry Chaco, a semi-arid region of 
dry forests and savannas [29].

This study was carried out in the municipality of 
Pampa del Indio, Chaco province, Argentina, located 
in the transition between the humid and dry Chaco. 
The municipality extends over approximately 60  km by 
30 km and includes two loosely connected urban centers 
(Pampa del Indio and Pueblo Viejo), a peri-urban section 
(Parque Industrial) and 32 dispersed rural settlements. 
The rural section of the municipality was divided into 
four areas (I, II, II and IV) for operational purposes [22]. 
Based on a supervised classification, Rodríguez-Planes 
[30] showed that in Pampa del Indio the estimated per-
centage of land covered by different types of forests (with 
different degrees of degradation) was 74.4% and 72.4% in 
December 2006 and August 2015, respectively. The for-
ests in the area have suffered a process of extraction and 
replacement that has reduced cover and increased con-
tact between forest habitats and other land covers. Forest 
cover is deeply intertwined with other land covers [30]. 
In rural areas, the main productive activity was a subsist-
ence economy, without extensive agriculture and with 
extensive livestock grazing mainly in the forests [30].

According to the 2010 national census, Pampa del Indio 
was inhabited by 15,287 people in 3862 housing units. 
The district is inhabited by two main groups: Qom, a for-
merly nomadic indigenous people organized in sedentary 
communities [31], and Creoles of European descent who 
arrived in the early 1910s. Chaco is among the provinces 
with the greatest social deprivation indices in Argentina 
[32].

Study design and household surveys
The intervention program was designed to assess the 
effects of community-wide spraying with pyrethroid 
insecticide on house (re)infestation with T. infestans in a 
context of persistently infested neighboring districts [22]. 
The program covered two overlapping periods: preinter-
vention (2007–2010) and postintervention (2008–2016). 
Surveys were conducted before and after community-
wide spraying to assess house infestation with tri-
atomines, collect sociodemographic data and decide 
whether a house was to be re-sprayed with insecticides.

House infestation with T. infestans was assessed by 
timed manual searches assisted with an aerosol to dis-
lodge the insects (0.2% tetramethrin). Searches were con-
ducted by personnel of the National or Provincial Chagas 
Program, supervised by one member of the research 
team. A house was considered infested if any live nymph 
or adult was found (excluding eggs). House infestation 
prevalence was 26.8% (range: 14.4–41.4%) in the pre-
intervention period; it was rare (range: 1.9–3.7%) over 
2–6  years postintervention and dropped to 0.7% (95% 
confidence interval, 0.28–1.29%) at endpoint across rural 
areas [22].

A household was defined as all the people who occu-
pied a housing unit, including related and unrelated 
family members. A house was defined as a set of con-
structions that typically included a domestic habitat (or 
domicile, i.e. an independent structure used as human 
sleeping quarters) and peridomestic structures such as 
chicken coops, storerooms and corrals [7, 25]. In total, 
2280 houses were registered between 2007 and 2016 and 
their location georeferenced with a GPS receiver (Garmin 
Legend; Garmin Ltd., Schaffhausen, Switzerland).

Data preparation
Outcome and sociodemographic variables
We included selected sociodemographic variables of 
interest that had been surveyed across the four opera-
tional areas and had fewer missing data: self-reported 
ethnicity (Qom and Creole), overcrowding (number of 
people per sleeping quarter), presence of suitable walls 
for triatomines, number of poultry (mainly chickens), 
number of dogs and cats and presence of peridomes-
tic structures. After excluding houses with missing data 
on the selected variables, the study base comprised 734 
houses, which represents 32.7% of the houses ever sur-
veyed across the follow-up (Additional file 1: Dataset S1). 
In the preintervention period, 91.2% of the houses in the 
subset were evaluated for triatomine infestation between 
2007 and 2008, while in the postintervention period, 
96.4% of the houses were evaluated between 2009 and 
2016; thus, the fraction of houses that shared an overlap-
ping time frame was minimal. In this study we focused 
on domestic infestation with T. infestans as the main out-
come variable because domestic infestation has direct 
effects on vector-borne transmission risk of T. cruzi to 
humans [24]. As 15.1% of the houses in the subset did not 
have peridomestic structures, we did not pursue a similar 
analysis for peridomestic infestation.

Surrounding green vegetation
To estimate the green vegetation surrounding each house, 
we calculated the NDVI based on Landsat 7 ETM + Level 
1 images downloaded from the EarthExplorer of the 
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United States Geological Survey (USGS) [33]. The spatial 
resolution of these images was 30 m per pixel. They were 
gap filled and corrected atmospherically using the dark 
pixel method [34]. The NDVI was calculated from the 
spectral difference between red and infrared bands. The 
NDVI values oscillate between – 1 and 1; the higher the 
value, the greater the density of green vegetation, with 
values < 0 indicating absence of vegetation [14]. In the 
humid Chaco ecoregion, Bigerna et al. [35] showed that 
NDVI values close to 0.8 were associated with forests, 
such as riparian forests, whereas values around 0.6 were 
associated with the presence of dense or open savanna 
and flooding grassland.

For each year between 2007 and 2016, three satellite 
images with < 20% cloud coverage were selected for the 
period between November and April of the following 
year, when most of the triatomine surveys were carried 
out. After excluding images with cloud agglomerations 
in the study area, only three images could be selected for 
the preintervention period. Therefore, for each postinter-
vention year, the same number of images were selected, 
which represents more than half of the median number 
of images available per year, prioritizing those with less 
cloud coverage and seeking to have similar amounts of 
images for each bimester. In the preintervention period, 
two images from November–December and one from 
March–April were selected, while in the postinterven-
tion period, a total of nine, seven and eight images for 
November–December, January–February and March–
April were selected, respectively. The median value of 
each pixel was calculated for each intervention period. 
The surrounding NDVI of each house was calculated as 
the median NDVI considering a 1000-m radius buffer 
centered on the corresponding domicile. For these pur-
poses, we used QGIS software [36] and R packages 
RStoolbox, sf and raster [37–39].

Data analysis
Global spatial analyses
We used random labeling to test the null hypothesis of 
random occurrence of marks (i.e. domestic infestation 
status, surrounding NDVI and sociodemographic vari-
ables) among the fixed spatial distribution of all selected 
study houses for each intervention period. For qualitative 
marks, we used the L(r) Ripley statistic by the distance 
(r), and for quantitative marks we used the rho(r) mark 
variogram, which indicates whether neighboring house-
holds present similar mark values evaluated at each dis-
tance r [40]; lower rho values reflect more similar values. 
The 95% confidence envelope was obtained from 9999 
Monte Carlo simulations using the R package spatstat 
[41].

Association between surrounding NDVI 
and sociodemographic variables
We used quantile regressions to estimate the association 
between the surrounding NDVI and household soci-
odemographic characteristics, since the distribution of 
surrounding NDVI did not fit a normal distribution (Sha-
piro-Wilk test, W = 0.99, P < 0.0001). While least-squares 
linear regression estimates the conditional mean of the 
response variable across values of the explanatory vari-
ables, quantile regression estimates the conditional quan-
tiles of the response variable [42]. Quantile regressions 
were performed between the 0.1 and 0.9 quantiles of the 
surrounding NDVI distribution, with a step of 0.1. Over-
crowding, number of poultry and number of dogs and 
cats were standardized. We included the intervention 
periods (pre- and postintervention) and areas (I, II, II and 
IV) as covariates and used R package quantreg [43].

Domestic infestation model
To estimate domestic infestation risks, we initially used 
a logistic regression model within a hierarchical Bayes-
ian framework including fixed effects and spatial random 
effects. Consider y(i) a variable that indicates domes-
tic infestation status (1: infested, 0: not infested) of a 
house at position i, with probability P(i) of being infested 
depending on house covariates and the risks posed by 
nearby houses. We assumed that y(i) follows a Bernoulli 
distribution:

We used the logit link function:

where x is a vector of fixed-effect variables (sociodemo-
graphic and surrounding NDVI variables), β is a vector 
of fixed-effect coefficients, and s is the spatial random 
effect that follows a zero-mean Gaussian process with 
Matérn covariance function [44]. This covariance func-
tion is defined by two parameters: σ, which denotes the 
standard deviation, and ρ, which represents the distance 
where the spatial correlation between two points reaches 
0.1. We used default priors for β, while for the ρ and σ we 
used the penalized complexity prior to induce tail prob-
abilities of Pr (ρ < 100 m) = 0.05 and Pr (σ > 5) = 0.05 [45]. 
Overcrowding, number of poultry, number of dogs and 
cats and surrounding NDVI were standardized. Param-
eter estimation was done using an integrated nested 
Laplace approximation with the stochastic partial dif-
ferential equation (SPDE) representation for the spa-
tial effects, available from the R-INLA package [46, 47]. 
The SPDE approach represents a continuously indexed 
Gaussian field with Matérn covariance as a discretely 

y(i)|P(i) ∼ Bernoulli (P(i))

logit (P(i)) = x(i)β+ s(i)
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indexed Gaussian Markov random field [48]. For this 
purpose, a representation of the base function defined 
in a triangulation of the domain is used. Based on sug-
gestions by Righetto et al. [49], we created a constrained 
refined Delaunay triangulation with maximal edge length 
of 500 m and 2000 m for the inner domain (study region) 
and outer domain (outside the study area, to avoid border 
effects), respectively, and 20  m as the shortest allowed 
distance between points. We selected a maximal edge 
length of 500 m for the inner domain because it was the 
shortest distance for which all the models converged; 
it represents < 1/10 of the minimum range of the study 
area, and the ρ estimated by the models was at least seven 
times greater than it. We selected the shortest allowed 
distance between points as 20 m because it represented 
< 1/5 of the maximal edge length for the inner domain 
and was < the 10th percentile of the nearest neighbor dis-
tance distribution in the study datasets.

We ran the models for each separate intervention 
period to estimate the coefficients for the fixed effects 
and spatial random effects. To evaluate whether the 
inclusion of spatial random effects improved the fit, we 
ran the models with the fixed effects only and selected 
the most parsimonious model based on the minimization 
of the Watanabe-Akaike information criteria (WAIC) 
[50].

We analyzed the sensitivity of model results to varia-
tion in the radius used to estimate the surrounding NDVI 
by testing alternative radii (100, 500, 1500 and 2000 m).

We used the same methodology to estimate domes-
tic infestation risk with the bigger dataset that included 
86.9% (1982) of the surveyed houses with no missing val-
ues for ethnicity to validate the spatial effects model with 
a substantially larger dataset (Additional file  1: Dataset 
S2; Additional file 2: Text S1).

Results
The percentage of houses with a domestic infestation 
with T. infestans was higher in the preintervention period 
(17.1%, n = 703) than in the postintervention period 
(5.2%, n = 734); (χ2: 50.7, df: 1, P < 0.0001). In univariate 
analyses, preintervention domestic infestation was posi-
tively associated with Qom ethnicity, suitable walls for 
triatomines and overcrowding, whereas postintervention 
domestic infestation was positively associated with an 
increase in surrounding NDVI (Table 1).

Preintervention domestic infestation was spatially 
aggregated between 200 and 2820  m (Additional file  3: 
Figure S1). Over this range, Qom ethnicity, suitable walls 
for triatomines and surrounding NDVI were substantially 
aggregated in both intervention periods, and the pres-
ence of peridomestic structures showed significant spa-
tial repulsion (Additional file 3: Figures S2–S5). Random 
global spatial patterns were observed for overcrowding, 

Table 1 Distribution of variables by intervention period and domestic infestation status

a In Qom ethnicity, suitable walls for triatomines and presence of peridomestic structures variables, the quantity and percentage in parentheses are shown in Total, 
Infested houses and Non-infested houses columns; values in Statistic and P value columns correspond to the Chi-square test with df = 1. In overcrowding, number of 
poultry, number of dogs and cats and surrounding NDVI variables, the median and 25th and 75th percentiles in parentheses are shown in Total, Infested houses and 
Non-infested houses columns; values in Statistic and P value columns correspond to the Wilcoxon rank sum test. NDVI normalized difference vegetation index
* Statistically significant

Period Variablea Total Infested houses Non-infested houses Statistic P value

Preintervention Number of inspected houses 703 120 583 – –

Qom ethnicity 407 (57.9) 84 (70.0) 323 (55.4) 8.1 0.0044*

Suitable walls for triatomines 406 (57.8) 93 (77.5) 313 (53.7) 22.2  < 0.0001*

Presence of peridomestic structures 606 (86.2) 99 (82.5) 507 (87.0) 1.3 0.2518

Overcrowding 2.5 (1.3, 4.0) 4.0 (2.0, 5.0) 2.0 (1.3, 3.9) 23455.0  < 0.0001*

Number of poultry 15.0 (3.0, 30.0) 15.0 (5.0, 28.2) 15.0 (2.0, 30.0) 34786.5 0.9236

Number of dogs and cats 3.0 (1.0, 5.0) 3.0 (1.0, 5.0) 3.0 (1.0, 5.0) 33853.0 0.5744

Surrounding NDVI 0.6 (0.5, 0.6) 0.6 (0.6, 0.6) 0.6 (0.5, 0.6) 31643.0 0.0996

Postintervention Number of inspected houses 734 38 696 – –

Qom ethnicity 421 (57.4) 21 (55.3) 400 (57.5) 0.0 0.9207

Suitable walls for triatomines 420 (57.2) 27 (71.1) 393 (56.5) 2.6 0.1093

Presence of peridomestic structures 624 (85.0) 34 (89.5) 590 (84.8) 0.3 0.5771

Overcrowding 2.5 (1.3, 4.0) 3.4 (1.6, 4.8) 2.5 (1.3, 4.0) 11330.0 0.1354

Number of poultry 15.0 (2.0, 30.0) 16.5 (10.0, 30.0) 15.0 (2.0, 30.0) 12322.0 0.4759

Number of dogs and cats 3.0 (1.0, 5.0) 4.5 (1.0, 6.0) 3.0 (1.0, 5.0) 11492.0 0.1694

Surrounding NDVI 0.6 (0.6, 0.6) 0.6 (0.6, 0.7) 0.6 (0.6, 0.6) 9853.0 0.0081*



Page 6 of 14Elias et al. Parasites & Vectors          (2024) 17:240 

number of poultry and number of dogs and cats (Addi-
tional file  3: Figures  S6–S8). Postintervention domestic 
infestation was not spatially aggregated (Additional file 3: 
Figure S1).

Using quantile regressions, Qom ethnicity and the 
household number of poultry were negatively associ-
ated with surrounding NDVI values in quantile ranges 

[0.3–0.9] and [0.4–0.9], respectively (Fig.  1, Additional 
file 4: Table S1). In contrast, overcrowding was positively 
associated with surrounding NDVI values between the 
0.1 and 0.7 quantiles, and the presence of suitable walls 
for triatomines in the domicile showed a positive trend 
with surrounding NDVI across all quantiles (Fig.  1, 
Additional file  4: Table  S1). Neither the presence of 

Fig. 1 Association between surrounding NDVI and sociodemographic variables. The coefficients shown correspond to quantile regressions 
considering the surrounding NDVI as the outcome variable. Operational areas and the intervention period were included as covariates. The 
gray-shaded region indicates the 95% confidence interval of quantile regression coefficient. The violet solid line indicates the coefficient 
corresponding to an ordinary linear regression and the violet dotted lines its 95% confidence interval. NDVI normalized difference vegetation index
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peridomestic structures nor the number of dogs and cats 
was significantly associated with surrounding NDVI.

Regarding domestic infestation risk, in both interven-
tion periods the models including spatial random effects 
had lower WAIC values than the models without spa-
tial random effects (511.5 vs. 609.7 in the preinterven-
tion period and 278.8 vs. 299.7 in the postintervention 
period). In the preintervention period, domestic infes-
tation risk increased in households with Qom descent, 
overcrowded, having suitable walls for triatomines and 
with increasing surrounding NDVI. In the postinter-
vention period, overcrowding, suitable walls and sur-
rounding NDVI were associated with a higher risk of 
domestic infestation (Table 2). Regarding spatial effects, 
in the preintervention period, we identified eight geo-
graphic regions, ranging from 0.03 to 26.22   km2, where 
the spatial effect did not include 0 in its 95% credible 
interval (CI) (i.e. regions with a positive or negative risk 
of domestic infestation not explained by the fixed effect 
variables included in the models) (Fig.  2A). In particu-
lar, two large-sized regions were identified: one cover-
ing 26.22  km2 in the northwest (overlapping with Campo 
Los Toros, El Salvaje, Las Chuñas, Santos Lugares and 
Los Ciervos villages), associated with a higher domestic 
infestation risk. The second region, covering 10.19   km2 
in the southeast section of the district (overlapping with 
Campo Nuevo, Lote Cuatro and Campo Medina villages), 
was associated with a lower domestic infestation risk. In 
the postintervention period, two geographic regions were 
associated with a higher risk of domestic infestation: one 
(0.34   km2) overlapped with Campo Los Toros village; 
the second region (0.24   km2) overlapped with Campo 
Alemany and Colonia Mixta villages (Fig. 2B).

We obtained no significant effects of surrounding 
NDVI on domestic infestation risk included in the mod-
els described above when other radial distances (100, 500, 

1500 and 2000 m) were used to estimate the surrounding 
NDVIs in both intervention periods (Additional file  4: 
Table  S2), except for the 500  m radius in the preinter-
vention period (0.42, 95% CI 0.06–0.80). This coefficient 
did not differ significantly from that obtained with the 
1000 m radius. With a radius of 1500 m, the coefficient 
showed a positive trend in the postintervention period 
(0.53, 95% CI −0.03 to 1.14). In addition, the WAIC val-
ues of the models with other radii were higher than those 
of the models with the 1000 m radius or exhibited a triv-
ial difference (< 1) (Additional file 4: Table S2).

Nearly the same main outcomes were obtained with 
the bigger dataset including 1982 houses. The 95% CI of 
Qom ethnicity and surrounding NDVI for the subset of 
734 study houses overlapped with those obtained with 
1982 houses (Additional file  2: Table  S3 and Figure S9). 
Likewise, in the analyses with both datasets, the largest-
sized regions where the 95% CI for spatial effects did not 
include 0 also overlapped.

Discussion
We found that overcrowding was associated with increas-
ing values of surrounding NDVI, whereas Qom ethnicity 
and the number of poultry were associated with decreas-
ing values of surrounding NDVI in rural houses of Pampa 
del Indio. Hierarchical Bayesian models integrated soci-
odemographic, environmental and spatial aspects and 
revealed that domestic infestation risk with T. infestans 
was associated with both the density of green vegetation 
surrounding the houses and sociodemographic factors 
across both intervention periods. In the preintervention 
period, surrounding NDVI, overcrowding, suitable walls 
for triatomines and Qom ethnicity were associated with a 
higher domestic infestation risk. Three of these variables 
(surrounding NDVI, overcrowding and suitable walls) 
were also associated with domestic infestation risk in 

Table 2 Coefficients of fixed and random effects of domestic infestation models

a Median and 95% credibility interval of coefficients are shown. NDVI normalized difference vegetation index
b Fixed effects that did not include 0 in their 95% credibility interval

Variable Preinterventiona Postinterventiona

Intercept −3.81 (−5.14 to −2.65)b −4.76 (−6.62 to −3.18)b

Qom ethnicity 1.25 (0.43–2.12)b 0.14 (−0.88 to 1.22)

Overcrowding 0.56 (0.32–0.81)b 0.36 (0.01–0.72)b

Suitable walls for triatomines 0.97 (0.38–1.57)b 0.88 (0.06–1.71)b

Number of poultry 0.02 (−0.29 to 0.32) 0.04 (−0.36 to 0.44)

Number of dogs and cats 0.13 (−0.13 to 0.39) 0.12 (−0.25 to 0.49)

Surrounding NDVI 0.49 (0.04–0.97)b 0.56 (0.06–1.10)b

Presence of peridomestic structures 0.05 (−0.63 to 0.73) 0.44 (−0.78 to 1.66)

Range (ρ) 6716.71 (3746.86–15180.53) 3558.59 (735.58–18883.92)

Standard deviation (σ) 1.79 (1.25–2.66) 1.45 (1.04–2.06)
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the postintervention period. In both periods, we identi-
fied areas with a differential infestation risk not explained 
by the sociodemographic and environmental variables 
included in the models.

The well-known direct association between domestic 
infestation risk, overcrowding and suitable walls for tri-
atomines [6, 8] reveals the influence of social disparities 

on the occurrence and persistence of house infestation, 
likewise in Area III of Pampa del Indio [7, 9]. Wall con-
ditions are directly associated with the availability of 
appropriate refuges and triatomine abundance [51–53]. 
A plausible interpretation of the domestic infestation 
risk associated with overcrowding is that more human 
occupants per room (i.e. human density) increase the 

Fig. 2 Observed domestic infestation and posterior median of spatial effect by intervention period. A preintervention and B postintervention. The 
regions delimited by violet and green lines correspond to those where the spatial effect did not include the value 0 in its 95% credible interval; 
in violet, spatial effects > 0; in green, effects < 0. The dots represent the houses (violet: infested, green: non-infested). The solid gray lines represent 
the municipality boundaries, the solid blue line represents the Bermejo River, and the dashed gray lines represent village boundaries. The gray 
region represents the urban conglomerate of Pampa del Indio. Village acronyms: 10 M 10 de Mayo, CT Campo Los Toros, CO Colonia Ombú, SV 
El Salvaje, CV Los Ciervos, FB Fortín Brown, H La Herradura, LL La Loma, BV Las Bravas, CHU Las Chuñas, RI Santa Rita, LUG Santos Lugares, 3L Tres 
Lagunas, LC Lote Cuatro, NU Campo Nuevo, ME Campo Medina, LA Cancha Larga, OM Pampa Ombú, BC La Barrancosa, PG Pampa Grande, PC Pampa 
Chica, CC Cuarta Legua Catorce, CD Cuarta Legua Diecisiete, PV Pueblo Viejo rural, RN El Rincón, CQ Campo Cacique, H2 La Herradura 2, CY Campo 
Alemany, CM Colonia Mixta, LM Las Muñecas, EP ex-Parque, TCZ Tacuruzal, PIN Parque Industrial
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availability of blood meal sources, human-feeding suc-
cess and the nutritional status of T. infestans popula-
tions [54, 55]. Host-feeding success is also affected 
by the relative contribution of other domestic blood-
meal sources, mainly chickens and dogs in the Chaco 
ecoregion [56], which can be of magnitude and corre-
lates positively with the number of human residents. 
Although the household numbers of poultry, dogs and 
cats were not associated with domestic infestation risk, 
these variables did not consider whether these domes-
tic hosts rested indoors or not. Overcrowding and wall 
conditions suitable for triatomines reflect social vulner-
ability and households that have less access to resources 
for prevention (e.g. insecticide use and improvement of 
house construction) along with disadvantageous struc-
tural conditions [7, 9].

Our results showed a positive association between sur-
rounding green vegetation and domestic infestation risk, 
in agreement with some studies in different settings [17, 
18]. High vegetation cover may be linked to a greater 
availability of refuges and hosts for sylvatic triatomine 
species, depending on the epidemiological scenario 
[18–21]. In the context of vector control interventions, 
house spraying with insecticides may trigger triatomine 
dispersal from the infested house to sylvatic or extra-
peridomestic habitats and maintain a latent risk of house 
(re)infestation from these sources [57], especially where 
T. infestans has numerous sylvatic foci as in Bolivia [58]. 
In Pampa del Indio, sylvatic Triatoma sordida and Pan-
strongylus sp. were frequently collected but no sylvatic 
focus of T. infestans has been found so far [59, 60]. In the 
Dry Chaco ecoregion, sylvatic foci of T. infestans were 
detected between 110 and 2300 m from the nearest house 
after community-wide spraying with pyrethroids [57]; 
nearly all of them were associated with trees at ground 
level, fallen trees and tree stumps. Coincidentally, in the 
current study, although the highest infestation risk of sur-
rounding green vegetation was observed within a 1000 m 
radius, a similar trend occurred within 500 and 1500  m 
radii. These distances fall within the estimated flight range 
of T. infestans, roughly 1.5 km [61–63]. In Area I of Pampa 
del Indio, a longitudinal study revealed a positive associa-
tion between house infestation with T. infestans and high 
coverage of dry forest within 500  m of the house across 
both intervention periods, whereas postintervention 
house infestation was negatively associated with humid 
forests [30]. These analyses excluding sociodemographic 
characteristics corroborated our findings.

NDVI was associated with overcrowding (positively), 
the household number of poultry and Qom ethnicity 
(negatively); these relationships are likely rooted in socio-
economic conditions. In Pampa del Indio, rural house-
holds with more vulnerable social conditions had fewer 

livestock (including poultry) and therefore a lower num-
ber of peridomestic structures and smaller peridomes-
tic areas; hence, surrounding NDVI could reach higher 
values. The negative association between surrounding 
NDVI and Qom ethnicity may be partially related to 
the current spatial organization of Qom households in 
Pampa del Indio, with houses heavily clustered in well-
defined sections and within short distances from each 
other, a spatial pattern partly linked to collective land 
ownership [7]. The association between surrounding 
NDVI and sociodemographic characteristics hints at the 
social dimension underlying variation in NDVI and sup-
ports the need to simultaneously include both social and 
landscape characteristics in the assessment of domestic 
infestation risks to account for potential collinearity.

Environmental (e.g. proximity and conservation status 
of nearby forest fragments) and social drivers (isolation 
and higher social vulnerability) affect the invasion of rural 
houses by some species of triatomines [i.e. 5,12,18]. Eco-
logical drivers, such as the attraction to artificial lights, 
have usually concentrated the attention of researchers 
[12, 18]. Our results suggest that part of the infestation 
risk associated with a high density of surrounding green 
vegetation is also tied to vulnerable social conditions of 
marginalized households inhabiting these landscape 
types. These results and interpretations are in line with 
those suggested by Vázquez-Prokopec et al. [17], whereby 
the expansion of the agricultural frontier brought sig-
nificant changes in land tenure, land cover and socioeco-
nomic conditions of rural populations in northwestern 
Argentina. Within large land tracts, mud-and-thatch 
houses were replaced by “better-built” houses for farm 
owners and employees prior to complete deforestation 
[17]. Rural villagers on a subsistence regime (mainly by 
raising goats and poultry, family agriculture, hunting and 
gathering) were displaced to the margins of those land 
tracts [64]. Deforestation and changes in land use were 
associated with the movement of triatomine vectors and 
hosts and increased house infestation and host infection 
risks [65, 66].

The spatial aggregation of domestic infestation and 
Qom ethnicity qualitatively coincides with the patterns 
recorded in Areas I [25], Area III [7] and across Pampa del 
Indio over a decade [22]. The spatial structure uncovered 
in domestic infestation, Qom ethnicity, suitable walls, sur-
rounding NDVI and presence of peridomestic structures 
largely supported the inclusion of spatial effects in infesta-
tion risk assessments, which showed lower WAIC values. 
These models identified two main regions with infestation 
risk not explained by the sociodemographic and envi-
ronmental variables included in the fixed-effects models. 
The main region with the largest size and a positive risk 
of domestic infestation across both intervention periods 
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occurred in Area I [22], where house infestation over the 
first 3 years postintervention was strongly associated with 
mud walls, thatched roofs, high refuge availability for tri-
atomines, domestic host abundance and lack of domes-
tic use of insecticides [25]. Area I displayed the highest 
prevalence of preintervention house infestation (41.4%) 
and required proportionally more house sprays with pyre-
throid insecticide than the rest of the municipality [22]. 
Household (re)infestation in Area I was closely linked to 
the occurrence of pyrethroid-resistant T. infestans popu-
lations [67] and proximity to Castelli, a heavily infested 
district with high pyrethroid resistance [68, 69]. High 
contact rates and proximity between households in Area 
I and Castelli most likely facilitated the passive transport 
and active dispersal of T. infestans to non-infested houses 
within Pampa del Indio.

The second region with a differential (negative) risk of 
domestic infestation preintervention was located in Area 
II, which had the lowest prevalence of house infestation 
(14.4%) at preintervention across the district [22]. This 
is partially explained by the fact that the local health-
care system had sprayed some Area II villages with pyre-
throids 2 years before the initial community-wide survey 
and insecticide spraying campaign, whereas in other 
sections the latest official vector control measures had 
occurred 6–12 years before [26]. Another distinctive fea-
ture of Area II is that the preintervention survey of house 
infestation comprised a systematic sample (33%) of all 
houses, unlike the full coverage achieved in other areas. 
However, postintervention surveys in Area II achieved 
full coverage and recorded comparatively low degrees 
of domestic infestation and triatomine infection with  
T. cruzi [22, 24].

Our analysis faced some limitations:

 i. The number of missing sociodemographic data 
determined a smaller dataset with complete data 
(734). While this represents a considerable subset of 
the district-wide population, future efforts to com-
pile complete datasets of sociodemographic vari-
ables will enable exploring other associations. The 
estimated credible intervals of the spatial effects and 
the fixed effects of Qom ethnicity and surround-
ing NDVI, obtained with the subset of 734 houses, 
overlapped with those obtained with the subset of 
1982 houses (Additional file  2: Text S1, Table  S3, 
and Figure S9). In addition, the missing data could 
be linked to the high internal mobility rates regis-
tered in some sections of Pampa del Indio; hence, 
data loss might not be completely at random [7, 9].

 ii. Domestic infestation assessed by timed manual 
searches has limited sensitivity to detect low-den-

sity infestations, such as those recorded postinter-
vention [70, 71]. Multiple search occasions postint-
ervention largely compensated [22].

 iii. Since a considerable percentage of the study houses 
(15.1%) lacked peridomestic structures, perido-
mestic infestation was not included in the models 
although peridomestic infestation is usually asso-
ciated with domestic infestation and reinfestation 
processes with T. infestans [72]. Recently, perido-
mestic infestation by T. infestans was associated 
with vegetation cover type around rural houses in 
northwest Córdoba (Argentina) with higher infes-
tation risk observed in peridomiciles immersed in 
open shrubland [73].

 iv. NDVI has been widely used to measure the den-
sity of green vegetation; it may not differentiate 
between certain vegetation types [14]. During the 
study period, the land cover of rural Pampa del 
Indio had a high percentage of forests [30]. The 
incorporation of vegetation type classification 
based on field-collected data would add more pre-
cision to the environment characterization. Fur-
thermore, climatic conditions can also influence 
the vegetation characterization, such as tempera-
ture and rainfall [74], which also affect the geo-
graphical distribution of triatomines [75]. These 
variables are probably more relevant at larger spa-
tial scales and are less informative at the spatial 
scale of our study.

 v. Unlike other studies that discretized NDVI to 
facilitate vegetation characterization, we have used 
NDVI as a continuous variable because its discre-
tization implies a loss of information and statistical 
power; it increases the probability of false-positive 
results and may lead to residual confounding [76]. 
Using a NDVI discretization or a thematic land 
cover classification would imply adding more vari-
ables to regression models, exceeding the limit of 
the recommended number of variables mainly dur-
ing the postintervention period [77].

 vi. The outcomes of hierarchical Bayesian models may 
be influenced by the parameters used to create the 
space triangulation, especially the shortest allowed 
distance between points and the maximal edge 
length for the inner domain [49]. Although there is 
still no formal procedure to specify the triangula-
tion parameters a priori, good practices for its con-
struction are in place [49]. The fact that the ρ esti-
mated by the models was considerably greater than 
the maximum edge length for the inner domain 
suggests a minimal influence of the selected trian-
gulation parameters.
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Implications for vector surveillance and control
Our study provides evidence for prioritizing and guid-
ing vector and disease control actions. First, we showed 
a close link between selected sociodemographic factors 
and the density of green vegetation surrounding houses. 
These results broaden the interpretations of domestic 
infestation risk associated with green vegetation. For 
domiciliated triatomines with sparse or no sylvatic foci, 
explanations relying on mechanistic processes linked to 
sylvatic sources of triatomines may not be appropriate. 
Further studies would allow clarifying the direct and indi-
rect links between environmental and sociodemographic 
features and consequently their association with domestic 
infestation risk by domiciliated triatomines. Second, we 
showed the importance of integrating spatial, social and 
environmental aspects for estimating the domestic infes-
tation risk and for the design of surveillance and control 
actions. Although these aspects had been previously ana-
lyzed separately [22], in this study we showed the poten-
tial of hierarchical Bayesian models to consider them 
simultaneously. In this sense, the zones with high infesta-
tion risk not explained by socio-environmental variables 
included in the models are areas in which it is necessary 
to deepen research to understand which other character-
istics may intervene in these domestic infestations. Tar-
geting surveillance and control actions to priority areas 
would increase the cost-effectiveness of interventions and 
sustainability of disease control programs.

Conclusions
Our study showed the need to simultaneously consider 
social, environmental and spatial aspects in the estima-
tion of domestic infestation risk with T. infestans to 
control the potential dependency across aspects and to 
improve the understanding of the processes underly-
ing domestic infestation risk. The association between 
the green vegetation surrounding houses and household 
social characteristics showed the need to consider non-
mechanistic interpretations of the domestic infestation 
risk associated with the surrounding landscape, mainly 
in the study of domiciliated triatomines. Vulnerable 
social conditions adjusted for environmental and spatial 
characteristics were strongly associated with a higher 
domestic infestation risk with T. infestans. These results 
reinforce the need to improve housing quality and liv-
ing conditions to reduce domestic infestation risk with 
triatomines and improve health. Hierarchical Bayesian 
models allowed us to integrate social, environmental 
and spatial effects and identify regions with differential 
domestic infestation risks not explained by the socio-
environmental variables included in the models: this 
information is key for evidence-based decision-making in 
the context of vector and disease control.
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