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Abstract 

Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physi‑
ological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues 
for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many 
animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposi‑
tion site selection for gravid females. Furthermore, deadly vector‑borne pathogens such as Plasmodium falciparum 
and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive 
to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have 
demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks 
toward their vertebrate hosts, as well as potential tools for diagnosis of vector‑borne diseases (VBDs). Herein, we 
provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, 
and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.
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Background
Mosquitoes, ticks, and sand flies are among the most 
important vectors of pathogens worldwide, being respon-
sible for the transmission of infectious agents such as 
viruses, bacteria, nematodes, and protozoa of human 
and veterinary concern [1–3]. The mechanisms used by 

these arthropod vectors to locate susceptible vertebrate 
hosts include visual, olfactory, acoustic, and thermal 
stimuli. Such mechanisms influence the host seeking 
behaviour of individual arthropods according to the spe-
cies characteristics and biology, even within the same 
taxonomic group. For example, many species of ticks 
(e.g., Dermacentor spp., Ixodes spp., Rhipicephalus spp.) 
have a questing behaviour, in which they climb the veg-
etation and wait for the appropriate host, whereas other 
species such as Hyalomma spp. are considered hunting 
ticks, since they actively chase for vertebrate hosts [4–6]. 
Another example is the South American sand fly species 
Lutzomyia (Lutzomyia) longipalpis, in which females are 
attracted not only by the host odour, but also by aggrega-
tion of sex pheromones of sand fly males that arrive first 
to the host [7–10].
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Among the cues used by arthropods, the olfactory 
stimuli have been the most studied, being crucial to iden-
tify the preferential hosts, principally for vectors with a 
high host specificity [11, 12]. Volatile organic compounds 
(VOCs) are a group of chemicals in a gaseous phase and 
with high vapor pressure, which are delivered as products 
of the cell metabolism, reflecting the physiological and 
pathological conditions of the organisms [13]. The US 
Environmental Protection Agency (EPA; https:// www. 
epa. gov/) define VOCs as compounds of carbon, exclud-
ing gases that participate in atmospheric photochemical 
reactions, such as carbon monoxide, carbon dioxide (con-
sidered an universal attractant for arthropods), carbonic 
acid, metallic carbides or carbonates, and ammonium 
carbonate. Importantly, some VOCs affect the behaviour 
of arthropod vectors, which indicates that studying these 
molecules is crucial to understand the host preference 
of mosquitoes, sand flies, and ticks [14–17]. In addition, 
such compounds may be applied to improve the trapping 
methods available for capturing these arthropods [11, 18, 
19].

Several VOCs are emitted by vertebrate hosts. How-
ever, a relatively small amount of them have an influence 
on the arthropod behaviour, being defined as ‘allelochem-
icals’ [11]. The latter include kairomones (attractants) and 
allomones (repellents) [11]. Kairomones may be applied 
as selective tools for studying population abundance, 
surveillance of invasive species and vector-borne patho-
gens, as well as for predicting pathogen outbreaks [20, 
21]. Conversely, the repellent effect of allomones emit-
ted by fungi, bacteria, yeasts, plants, and mammals rep-
resents a potential tool for controlling arthropod vectors 
[22–25]. The presence of VOCs has also been explored in 
the diagnosis of cancer and infectious diseases in humans 
and animals [13, 26–28], as well as for managing agricul-
tural pests [21, 29, 30].

In general, the host preference of blood feeding arthro-
pod vectors is often investigated through the analysis of 
blood meal by molecular methods [31–38], or by host-
choice experiments in laboratory conditions [39–42]. 
However, while the above methods are useful to investi-
gate the host preference, they are limited in assessing the 
factors influencing the attracting capacity of the hosts. 
Conversely, the interaction between arthropod vectors 
and vertebrate hosts could be assessed through olfac-
tory cues by determining the attractiveness or repellent 
effects of VOCs emitted by the hosts (Fig. 1). This is usu-
ally investigated at laboratory scale, collecting VOCs 
from the host through classical extraction methods; this 
can be done relying to adsorption materials used in solid-
phase micro extraction (SPME) and direct-contact sorp-
tive extraction (DCSE). Then, the collected compounds 
are subsequently identified through gas chromatography 

(GC), nuclear magnetic resonance (NMR) and mass 
spectrometry (MS) approaches [43]. Once identified, 
electroantennography (EAG/EAD; Fig.  2), also coupled 
with GC and MS (i.e., GC-EAD and GC–MS-EAD) can 
be used to evaluate which molecules of a VOCs’ bouquet 
are really perceived by a given arthropod vector. Elec-
troantennography-active VOCs can be therefore tested 
in behavioural experiments such as olfactometer assays 
(e.g., Y-tube olfactometer and flight tunnel; Fig. 3) and in 
field/semi-field tests to shed light on their ecological role 
and potential use in vector monitoring and management.

Several studies on VOCs and their role as attractants or 
repellents have been performed for different arthropod 
vectors including mosquitoes [22, 42, 44–60], ticks [61–
67], phlebotomine sand flies [68–76], triatomines [12], 
and tsetse flies [77, 78]. The latter includes species of the 
genus Glossina, which are exclusively found in Africa, 
where field and laboratory studies have been performed 
and reviewed elsewhere [78]. In the present review, we 
analysed current knowledge on the host-borne VOCs 
acting as attractants or repellents for worldwide distrib-
uted vectors of major medical and veterinary impor-
tance, such as mosquitoes, phlebotomine sand flies, and 
ticks. Moreover, we discuss the applied implications of 
these compounds, including their potential usefulness for 
an early diagnosis of vector-borne diseases (VBDs).

Volatile organic compounds and mosquitoes
Mosquitoes are the most important arthropod vec-
tors worldwide transmitting many deadly pathogens of 
human and veterinary concern, such as chikungunya, 
dengue, zika, West Nile virus, Rift Valley fever virus, 
Japanese encephalitis virus, Plasmodium spp., and Dirofi-
laria spp. [79–81]. Studies on the repellent and attraction 
effects of these arthropods using olfactory cues have been 
mostly assessed for Anopheles spp., Aedes aegypti, and 
Culex spp., which are vectors of deadly human pathogens 
[45, 47, 51, 82–87]. For example, the repellent effect of 
some VOCs isolated from cattle has been showed for Ae. 
aegypti, Culex quinquefasciatus and Anopheles coluzzii 
[22]. In the above study, unsaturated aldehydes (Table 1) 
extracted from the hair of Holstein heifer cattle showed 
a repellent effect against these insects under laboratory 
and field conditions [22]. In laboratory assays, the four-
component blends (i.e., (E)-2-hexenal, (E)-2-heptenal, 
(E)-2-octenal, and (E)-2-nonenal) repelled females with 
an effect similar to that of commercial repellents that 
were used as control (i.e., N, N-diethyl-m-toluamide 
[DEET], ethyl butylacetylaminopropionate [IR3535], 
p-menthane-3, 8-diol [PMD], icaridin, and d-allethrin). 
Moreover, under field conditions, traps treated with 
the four-component blend captured significantly lesser 
mosquitoes in a site (average reduction of 84.8%) in 

https://www.epa.gov/
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Fig. 1 Host‑borne volatile organic compounds (VOCs) influencing the olfactory behaviour of mosquitoes, sand flies, and ticks

Fig. 2 Electroantennography for the evaluation of sand flies chemoreceptivity to VOCs
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comparison with the control traps (baited with  CO2 and 
host kairomone), whereas in the second site the average 
reduction was of 55.5% [22].

The olfactory preferences of mosquitoes may dif-
fer according to the species, being an important cue for 
understanding the host choice and behaviour of these 
arthropod vectors [88]. Indeed, the attractive effect of 
VOCs has been assessed for Ae. aegypti, Cx. quinquefas-
ciatus, and Cx. nigripalpus, demonstrating that a higher 
number of compounds associated with bovine and avian 
blood (Table 1) were attractive for Ae. aegypti and, to a 
lesser extent for the other two species (Table  1) [89]. 
Again, lactic acid, a compound present in vertebrate 
hosts, was demonstrated to be attractive to Ae. aegypti 
[89, 90] and Cx. quinquefasciatus [89] but did not elicit 
any behavioural response for Anopheles gambiae mosqui-
toes [45, 91]. Nevertheless, the attractiveness of carbon 
dioxide to An. gambiae was significantly increased when 
combined with lactic acid in experimental assays [83], 
suggesting that although this compound is not attrac-
tive on its own, it may potentialize the response of other 
compounds present on the skin [83]. Indeed, the syner-
gism among VOCs is an important factor to be consid-
ered when studying the role of these compounds in the 
behaviour of arthropod vectors, as demonstrated for An. 
gambiae mosquitoes, for which ammonia, lactic acid, and 
a mixture of carboxylic acids (Table 1) were tested alone 
and in combination to assess the olfactory responses 
of this mosquito species [45, 47, 51]. While ammonia 
was found to be attractive, the mixture of carboxylic 

acids was repellent, whereas lactic acid did not attract 
the mosquitoes. However, when ammonia, carboxylic 
acids and lactic acid were combined, they were signifi-
cantly more attractive for An. gambiae mosquitoes, than 
ammonia alone [45, 47, 51]. In addition, the compo-
nent blends from the above-mentioned studies became 
even more attractive to An. gambiae by the addition of 
butan-1-amine (associated with  CO2), and 3-methyl-
1-butanol [92]. Similarly, nonanal and  CO2 synergized 
in field experiments in which traps containing the two 
compounds captured significantly more Cx. quinquefas-
ciatus mosquitoes than traps baited only with  CO2 [86], 
therefore suggesting that host volatiles may have differ-
ent effects on the host seeking behaviour of arthropods, 
according to their abundance and combination.

Though not emitted by hosts, some VOCs have also 
been associated with the selection of oviposition sites 
by An. gambiae, An. arabiensis and Ae. aegypti gravid 
females [19, 93, 94], demonstrating that compounds 
produced in water bodies containing mosquito larvae 
may influence the selection of oviposition sites [93]. 
For example, dimethyl disulfide and dimethyl trisulfide 
detected in emanations from water containing fourth 
instar larvae (L4) acted as oviposition repellents, also 
causing retention of eggs within the gravid females [93]. 
On the other hand, VOCs (i.e., nonane and 2,4-pentan-
edione) identified in emanations containing first instar 
larvae (L1) were considered attractants, being the pres-
ence of these two compounds in water related with sig-
nificantly higher oviposition rates when compared to 
untreated water in semi-field trials [93]. The findings 
above indicate that the selection of the oviposition site by 
mosquitoes may be mediated by chemical compounds, 
and that the presence of larvae instars may impact on the 
choice of oviposition site by female mosquitoes, with L1 
causing an attractive effect, and L4 repellent and inhi-
bition outcomes on oviposition [93]. The oviposition 
selection sites of Ae. aegypti are also affected by VOCs 
produced in water bodies containing immature stages 
[19]. Indeed, by using blends of bioactive VOCs identi-
fied in eggs (i.e., 2,4-dimethylhept-1-ene; 2,6-dimethyl-
7-octen-2-ol; camphor; decanal), in second instar larvae 
(L2) (i.e., 4-cyanocyclohexene; (E)-2-octenal; nonanal; 
decanal 4-(2-methylbutan-2-yl) phenol), in L4 (i.e., 
2,4-dimethylhept-1-ene; (E)-2-heptanal; nonanal; cam-
phor; (E)-2-nonenal; (E)-2-decenal; 4-(2-methylbutan-
2-yl) phenol), and in pupae exuviae (4-cyanocyclohexene; 
2,6-dimethyl-7-octen-2-ol; nonanal) of Ae. aegypti it was 
demonstrated that gravid females were more stimulated 
to lay eggs in response to VOCs produced in water bod-
ies containing late-stage larvae [19]. All the above sug-
gested that VOCs may signalize the density of conspecific 
aquatic stages, influencing on the oviposition site choice 

Fig. 3 Y‑tube olfactometer used for behavioural experiments 
with sand flies and other arthropods
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Table 1 Attraction and repellent effects of volatile organic compounds (VOCs) associated with vertebrate hosts for mosquitoes, sand 
flies, and ticks

Arthropod group Attractants Reppellents Refs.

Mosquitoes

 Aedes aegypti Acetic acid; lactic acid; carbon disulfide; 
dimethyl disulfide; methyl sulfide

blend of (E)‑2‑hexenal, (E)‑2‑heptenal, (E)‑
2‑octenal, and (E)‑2‑nonenal (laboratory 
and field experiments)

[22, 89]

 Culex quinquefasciatus Lactic acid; blend of nonanal and  CO2 blend of (E)‑2‑hexenal, (E)‑2‑heptenal, (E)‑
2‑octenal, and (E)‑2‑nonenal (Laboratory 
and field experiments)

[22, 86, 89]

 Anopheles coluzzii Myristic acid; dimethyl disulfide; methyl 
propyl disulfide

blend of (E)‑2‑hexenal, (E)‑2‑heptenal, (E)‑
2‑octenal, and (E)‑2‑nonenal (laboratory 
and field experiments)

[22, 89]

 Anopheles gambiae 3‑methyl‑1‑butanol; ammonia; blend 
of ammonia and lactic acid; blend 
of ammonia, lactic acid, and carboxylic 
acids (ethanoic, propanoic, 2‑methyl‑
propanoic, butanoic, 3‑methylbutanoic, 
pentanoic, hexanoic, octanoic, decanoic, 
dodecanoic, tetradecanoic, hexadeca‑
noic); heptanal, octanal, nonanal; blend 
of ammonia, lactic acid, tetradecanoic 
acid; blend of 1‑butanol, 2,3‑butanedione, 
2‑methyl‑1‑butanol, 2‑methylbutanal, 
2‑methylbutanoic acid, 3‑hydroxy‑2‑bu‑
tanone, 3‑methyl‑1‑butanol, 3‑methylbu‑
tanal, 3‑methylbutanoic acid, and benze‑
neethanol

2‑phenylethanol; blend of ethanoic, 
propanoic, 2‑methylpropanoic, butanoic, 
3‑methylbutanoic, pentanoic, hexanoic, 
octanoic, decanoic dodecanoic, tetradeca‑
noic, hexadecanoic

[45, 47, 48, 50, 51]

 Anopheles arabiensis; Anopheles phar-
oensis

α‑pinene; β‑pinene; limonene; octanal; 
nonanal; decanal

– [114]

Anopheles stephensi 3‑methyl butanoic acid; 2‑methyl butanoic 
acid; hexanoic acid; tridecane

– [126]

Sand flies

 Lutzomyia (Nyssomyia) intermedia; Lut-
zomyia migonei; Lutzomyia (Nyssomyia) 
whitmani; Lutzomyia fischeri; Lutzomyia 
shannoni

Phenylacetaldehyde; 6‑methylhept‑5‑en‑
2‑one; icosane

– [72]

 Lutzomyia (Nyssomyia) intermedia Octenol; blend of lactic acid, caproic acid 
and ammonia

– [69]

 Lutzomyia (Lutzomyia) longipalpis Octanal; nonanal; decanal; heptadecane; 
octenol; nonanol; heptanol; blend of lactic 
acid, caproic acid and ammonia; benzal‑
dehyde; 4‑hydroxy‑4‑methyl‑2‑pentanone; 
4‑methyl‑2‑pentanone

– [69, 73, 74, 103]

 Lutzomyia (Nyssomyia) neivai Octenol; pentanol; hexanol; octanol – [70, 71]

Ticks

 Amblyomma sculptum Methyl salicylate; benzoic acid; ammo‑
nium hydroxide; salicylic acid

benzaldehyde; isobutyric acid; (E)‑
2‑octenal

[108, 109]

 Rhipicephalus sanguineus sensu lato Isovaleric acid; blend of hexanal, heptanal, 
and isovaleric acid

2‑hexanone; benzaldehyde; undecane; 
6‑methyl‑5‑hepten‑2‑one; 1,2,4‑trimeth‑
ylbenzene

[63, 66, 67]

 Rhipicephalus appendiculatus 3‑methylene‑2‑pentanone and o‑xylene 
(at lower doses: 0.01 and 0.1 mg)

3‑methylene‑2‑pentanone and o‑xylene 
(at higher doses: 1 and 10 mg); 4‑Hydoxy‑
4‑methyl‑2‑pentanone; ethyl benzene; 
4‑methylguaiacol; 3‑pentanone

[64]

 Rhipicephalus microplus 1‑octen‑3‑ol; 2‑nitrophenol – [61]

 Ixodes hexagonus Indole – [62]
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by gravid females, which may avoid laying eggs on sites 
in which the odour indicates high density of conspecific 
competitors [19].

Volatile organic compounds and sand flies
Sand flies are involved in the transmission of viruses 
(e.g., Phleboviruses: Naples, Sicilian and Toscana viruses; 
[95]) bacteria (e.g., Bartonella bacilliformis; [96]), and 
most importantly, of protozoa of the genus Leishmania 
to humans and animals [97]. The latter is transmitted by 
sand flies of the genus Phlebotomus spp. and Lutzomyia 
spp. in the old and new world, respectively [98]. Studies 
on the interaction among sand fly species and their hosts 
have been performed worldwide, and they mainly focused 
on the evaluation of blood meal by molecular analysis in 
these insects [36, 99–101]. Besides the detection of blood 
meal, the interaction of sand flies with vertebrate hosts 
may also be assessed by determining the attractiveness 
or repellent effect of these insects by VOCs, though few 
investigations are available. Lutzomyia species (members 
of subgenera Lutzomyia (Lu.) and Nyssomyia (N.)) were 
tested with VOCs from humans, dogs, and foxes [68, 69, 
72–74]. Of the 42 VOCs identified from the hair of 33 
human male volunteers in Brazil, seven compounds (i.e., 
Phenylacetaldehyde; 6-methylhept-5-en-2-one; tetrade-
cane; pentadecane; hexadecane; nonadecane; icosane) 
were tested for the attractiveness of field captured Lutzo-
myia spp. (i.e., n = 420 specimens; 75.4% Lutzomyia (N.) 
intermedia; 4.5% Lutzomyia migonei; 2.8% Lutzomyia 
(N.) whitmani; 0.9% Lutzomyia fischeri; 0.2% Lutzomyia 
shannoni; and 16.2% damaged sand flies non-identified) 
[72]. In the study above, four VOCs were demonstrated 
to induce a significant activation response in sand flies 
(i.e., phenylacetaldehyde; 6-methylhept-5-en-2-one; 
pentadecane; icosane), while three of them (i.e., Pheny-
lacetaldehyde; 6-methylhept-5-en-2-one; icosane) were 
attractive to female sand flies [72]. Lutzomyia (Lu.) lon-
gipalpis also had a behavioural response to VOCs found 
on humans, with the compounds octenol, nonanol and 
heptanol activating and attracting male and female sand 
flies in behavioural experiments [73]. Additionally, Lu. 
(Lu.) longipalpis and Lu. (N.) intermedia were attracted 
to octenol and a synthetic human odour BG-Mesh  Lure™ 
(BGML—lactic acid, caproic acid and ammonia) in field 
experiments using CDC light traps baited with these 
compounds [69]. The attractiveness of VOCs from the 
skin of different human individuals for Lu. (Lu.) longipal-
pis has also showed that there is a significant variation in 
individual attractiveness of human subjects to sandflies. 
However, the attractants were not identified in that study 
[68].

Volatile organic compounds emitted by L. infantum 
infected dogs were also assessed to test the responses 

of Lu. (Lu.) longipalpis [74], demonstrating that, when 
tested individually, octanal, nonanal, decanal and 
heptadecane activated and attracted male sand flies, 
whereas only decanal and nonanal showed an activa-
tion response of females [74]. Moreover, the blend of 
octanal, decanal and heptadecane increased both the 
activation and attraction behaviour in males, while the 
mixture of octanal and decanal acted only in the acti-
vation [74]. The higher attractiveness of these VOCs to 
male Lu. (Lu.) longipalpis may be related to the biology 
of this sand fly species, since males are also known to 
be attracted by the host odours, and under field stud-
ies they have been demonstrated to arrive first at the 
host sites than females [9]. Furthermore, females of 
this species have been suggested to be more attracted 
to the host volatile compounds when in combination 
with male-produced sex pheromone, a strategy for eas-
ing blood meal [8, 10]. In contrast to VOCs released 
from infected dogs, Lu. (Lu.) longipalpis females were 
demonstrated to be significantly more attracted than 
males in response to skin emanations from humans 
under experimental conditions. However, the attractive 
factors were not identified, advocating further experi-
ments to confirm this observation [102]. In wildlife, 
a single study on VOCs from foxes (Vulpes vulpes) 
demonstrated that female Lu. (Lu.) longipalpis were 
attracted by the natural odour, and by a synthetic blend 
mimicking the odour of this host, as well as by individ-
ual compounds (i.e., benzaldehyde; 4-hydroxy-4-me-
thyl-2-pentanone; 4-methyl-2-pentanone) identified in 
the fox odour [103].

The attraction of VOCs has also been tested for the 
species Lu. (N.) neivai, a vector of Leishmania (Viannia) 
brasiliensis in South America [70, 71], in which octenol 
[70, 71], pentanol, hexanol, and octanol [71] acted both 
in activating and attracting field captured female sand 
flies in behavioural experiments using wind tunnel. The 
above findings suggest that research on the attractiveness 
of sand flies by VOCs from mammalian hosts are rele-
vant to assess the host preference of these insects, as well 
as to enhance the efficiency of conventional traps used 
for monitoring and controlling phlebotomine sand flies.

The effect of VOCs in sand fly selection of oviposition 
sites has also been studied for Phlebotomus papatasi, in 
which volatile semiochemicals produced by bacterial iso-
lates (i.e., Actinobacteria, Bacteroides, Firmicutes, and 
Proteobacteria) had an attractive response for gravid 
females at low doses (i.e.,  107 cells per ml), and a repellent 
response at higher concentrations  (109 cells per ml) [104]. 
Though, the identification of the attractive VOCs pro-
duced by these bacteria was not completed, data above 
suggest that the attractiveness of Ph. papatasi to those 
VOCs is dose dependent.
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Volatile organic compounds and ticks
Ticks are important vectors of pathogens of zoonotic 
concern worldwide, being able to transmit infectious 
agents to humans, domestic animals, and wildlife [80, 
105]. These arthropods are responsible for significant 
economic losses to the livestock industry, which are 
directly related with the decrease in animal production 
and, indirectly, with the transmission of pathogens such 
as Anaplasma spp., Babesia spp., and Theileria spp. [105, 
106]. For this reason, studying the host preference, the 
pathogen transmission times [107] as well as the mech-
anisms behind the resistance of some breeds to ticks, is 
paramount to improve control measures against these 
ectoparasites.

Studies on VOCs have been employed in the assess-
ment of the attractive and repellent effects [108] of these 
compounds for ticks (Table  1). For example, the attrac-
tion of some volatiles (e.g., methyl salicylate; benzoic 
acid; ammonium hydroxide; salicylic acid) has been 
tested in nymphs of Amblyomma sculptum ticks col-
lected on naturally infected horses from Brazil [108]. 
These data suggested that such compounds may be 
used as trapping methods for A. sculptum ticks [108]. 
The same tick species has also been demonstrated to be 
repelled by benzaldehyde and isobutyric acid, which, in 
turn, are compounds previously detected in tick resistant 
mammalian hosts [63, 108]. Moreover, in another study 
performed on donkeys, the (E)-2-octenal was demon-
strated to act as a repellent for this tick species [109]. Of 
notice, the above compound was found in sebum extracts 
of donkeys, but not of horses, being the latter less resist-
ant to the infestation by A. sculptum ticks. Such data sug-
gested that the compound (E)-2-octenal could be used as 
a repellent for reducing A. sculptum populations in sus-
ceptible hosts [109].

In dogs, VOCs have also been assessed in breeds resist-
ant to Rhipicephalus sanguineus sensu lato ticks to detect 
compounds with potential repellent effect [63, 66]. For 
example, beagles have been demonstrated to be less sus-
ceptible to tick infestation when compared to English 
cocker spaniel breed [110], resulting in a lower attrac-
tiveness of beagles’ odour to R. sanguineus s.l. [111]. The 
observation above was further investigated through the 
isolation of VOCs from the skin of these two breeds, in 
which the gas chromatography analysis detected a greater 
number of compounds on odour extracts collected from 
beagles than in the extracts from cocker spaniel [63]. In 
addition, among the compounds detected in beagles, 
three of the most abundant (i.e., 2-hexanone; benzalde-
hyde; undecane), showed repellent effect at the behav-
ioural assays [63]. These data confirmed that beagles 
produce a larger amount of potentially natural repellents 
against this tick species [63]. This was further supported 

by another study, in which the VOCs produced by the 
above-mentioned breeds were compared with the ones 
produced by the miniature pinscher, which is a putative 
tick-resistant breed [66]. In the aforementioned study, 
2-hexanone and benzaldehyde were detected in the 
odour extracts of all three breeds, with 6-methyl-5-hep-
ten-2-one (sulcatone), and 1,2,4-trimethylbenzene being 
more abundant in miniature pinscher dogs. In addition, 
the overall abundance of these compounds was signifi-
cantly higher in beagles and miniature pinschers than in 
cocker spaniels [66]. In the behavioural assays, the com-
pounds 6-methyl-5-hepten-2-one and 1,2,4-trimeth-
ylbenzene were repellent for ticks, supporting that both 
may play a role in the resistance of these breeds to R. san-
guineus s.l. ticks [66].

The attractiveness of VOCs from dogs has also been 
assessed in a study identifying compounds that may be 
involved in host attraction and localization by R. san-
guineus s.l. [67]. In the above study isovaleric acid, hex-
anal, heptanal, and sulcatone significantly stimulated 
the olfactory receptors of female ticks using the single 
sensillum recording technique [67], while in the Y-tube 
olfactometer bioassays the ticks were attracted only to 
isovaleric acid and to a blend of hexanal, heptanal, and 
isovaleric acid [67]. Overall, those data suggested that the 
latter compounds may be involved in the host location by 
R. sanguineus s.l. [67].

Volatile organic compounds and vector‑borne 
pathogens
The association of VOCs with pathogens transmitted by 
arthropods have been assessed for Plasmodium falcipa-
rum [112–115] and for L. infantum [75, 76, 116, 117], 
transmitted by mosquitoes and sand flies, respectively 
(Fig. 1). Some VOCs attractive for mosquitoes have been 
suggested to be produced by P. falciparum as a strat-
egy of this parasite for facilitating its transmission [113, 
118–123]. For example, the compound (E)-4-hydroxy-3-
methyl-but-2-enyl pyrophosphate (HMBPP) produced by 
P. falciparum has been suggested to increase the produc-
tion and release of An. gambiae attractants from blood 
of malaria infected individuals, increasing the likelihood 
of vector bite in infected humans [121]. Indeed, VOCs 
already known to attract mosquitoes (i.e., α-pinene and 
3-carene) were detected at significantly higher levels in 
the breath of malaria infected children as compared with 
uninfected ones [123]. Nevertheless, it was later demon-
strated that HMBPP does not alter the levels of the mos-
quito attractant α-pinene, indicating that the mechanism 
used by Plasmodium spp. parasites to increase attrac-
tiveness of infected individuals remains unclear [124]. 
Moreover, under field conditions, a blend of VOCs (i.e., 
α-pinene; β-pinene; limonene; octanal; nonanal; decanal) 
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reflecting the odours induced by P. falciparum gameto-
cyte parasitizing the red blood cells, attracted 2.5 times 
more Anopheles spp. mosquitoes than non-baited traps, 
indicating that the parasite could manipulate the host-
seeking behaviour of malaria vectors [114]. Similarly, 
experimental trials demonstrated that the aldehydes hep-
tanal, octanal, and nonanal, which are produced in larger 
amount by infected individuals, enhanced an increased 
attractiveness of An. gambiae vectors [125], consequently 
affecting the transmission of the parasite.

The attraction of Anopheles stephensi mosquitoes to 
mice infected by Plasmodium chabaudi has also been 
demonstrated in an experimental study, which also 
showed a clear difference in the VOCs composition 
between infected and non-infected individuals, identi-
fying 11 VOCs (i.e., N,N-dibutylformamide; tridecane; 
2-pyrrolidone; 3-methyl-2-buten-1-ol; 3-methyl buta-
noic acid; 2-hexanone; benzaldehyde; and 4 unidenti-
fied compounds) as indicators of infection during the 
chronic phase [126]. In addition, 3-methyl butanoic acid, 
2-methyl butanoic acid, hexanoic acid, and tridecane 
were attractive for the mosquitoes, whereas benzothia-
zole, which decreased in infected mice, caused a signifi-
cant reduction in mosquito attraction [126].

Volatile organic compounds of symptomatic and 
asymptomatic malaria human patients has been used 
as biomarkers for the diagnosis of this disease, demon-
strating that some compounds (e.g., 4-hydroxy-4-meth-
ylpentan-2-one; nonanal; toluene; 2-ethylhexan-1-ol; 
ethylbenzene; ethylcyclohexane; propylcyclohexane; hex-
ane) were predictors of malaria infection [127]. Impor-
tantly, these volatiles presented a sensitivity of 100% in 
patients without clinical signs, suggesting their potential 
in screening of malaria infected individuals [127].

Similarly, VOCs production profile of L. infantum 
infected vs non-infected dogs has been assessed for the 
identification of possible biomarkers for the diagnosis of 
leishmaniasis [116]. In the above study, some VOCs (i.e., 
octanal; nonanal; undecane; β-hydroxyethylphenyl ether; 
decanal; tetradecane; nonyl cyclopentane; 8-pentadecan-
one; heptadecane; 2-ethylhexyl-salicylate) were identi-
fied being selectively expressed with different profiles in 
infected (with and without clinical signs) vs non-infected 
dogs [116]. In particular, β-hydroxyethylphenyl ether, 
nonanal, heptadecane, 2-ethylhexyl-salicylate, decanal, 
and octanal showed a significant variation in production, 
which could be regarded as potential biomarkers of infec-
tion by L. infantum in dogs [116].

The differences in VOCs profiles from L. infantum 
infected and non-infected individuals also influenced the 
attractiveness of sand flies, under experimental studies 
both in dogs [75], and hamsters for Lu. (Lu.) longipalpis 
[117]. The above studies demonstrated that male and 

female of Lu. (Lu.) longipalpis were equally attracted to 
the odour of uninfected dogs as compared to a solvent 
control [75]. Conversely, blood seeking females were sig-
nificantly more attracted than males when exposed to the 
odour of L. infantum infected dogs [75]. Similarly, female 
Lu. (Lu.) longipalpis were significantly more attracted 
to Golden Hamsters (Mesocricetus auratus) experimen-
tally infected by L. infantum, than to uninfected indi-
viduals [117]. Finally, the attractiveness of infected vs 
non-infected dogs to sand flies was also assessed for Ph. 
perniciosus and Ph. perfiliewi under experimental and 
field conditions, demonstrating that male and female 
insects were significantly more attracted to dogs infected 
by L. infantum than to non-infected [76]. Nevertheless, 
the VOCs profile of the animals in the above study was 
not assessed. Overall, this scientific evidence supports 
the concept that the parasite may modify the profile of 
VOCs on the host to make it more attractive to sand fly 
vectors.

Conclusions 
The olfactory cues of arthropod vectors have been mainly 
studied for mosquitoes and ticks, with the identification 
of attractive and repellent VOCs emanated by their verte-
brate hosts, and in a lesser extent for phlebotomine sand 
flies in which up to date, only attractive VOCs have been 
assessed (Table 1). The potential of these compounds to 
influence the behaviour of these arthropods have been 
assessed in several studies, being proved as a key factor 
in the host choice by ticks, mosquitoes, and sand flies. 
These investigations are of great importance to bet-
ter understand the host preference of some vectors by 
assessing the VOCs production profile, which differ not 
only according with the different host species, but also 
within hosts of the same species, affecting the individual 
susceptibility to arthropod bites [128, 129]. In addition, 
such studies are also useful for improving strategies of 
monitoring and control, particularly under the current 
global warming scenario, which also affects arthropod 
chemical ecology [130].

The differences in the production of VOCs in infected 
vs non-infected hosts, indicate that vector-borne path-
ogens such as P. falciparum and L. infantum may mod-
ify the profile of these compounds in infected hosts to 
make them more attractive for blood seeking vectors, 
which consequently increases the odds of transmission 
of VBDs. Such intriguing ecological hypothesis remains 
less explored for ticks and tick-borne pathogens. Under 
the above circumstances, the identification of VOCs 
biomarkers produced by infected host cells could be a 
potential tool for the diagnosis of vector borne patho-
gens. Nevertheless, the complexity of the skin micro-
environment of vertebrate hosts should be considered 
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when evaluating the VOCs production. For example, 
infections by skin dwelling microorganisms (e.g., bac-
teria, dermatophytes, mites), may influence the compo-
sition of VOCs on the host, potentially increasing the 
attraction to arthropod vectors [131, 132]. The above 
may be also true for non-infectious diseases such as 
cancer, which are also known to alter the VOCs pro-
file of the hosts [28]. However, whether the conditions 
above increase the risk of infection by vector borne 
pathogens should be further investigated.

Volatile organic compounds may also be useful for 
improving the mass rearing of arthropod vectors by 
using compounds that mimic the odour of the hosts, 
which could be applied in artificial membranes to 
increase the acceptability of arthropods to artificial 
feeding systems; therefore, avoiding the use of live 
animals in the mass rearing of blood feeding arthro-
pods. Finally, another future perspective for the use of 
VOCs is the potential integration between compounds 
emitted by hosts and vector pheromones, which may 
be used as a strategy for the monitoring of arthropod 
vectors through the increase in the attractiveness of 
trapping methods. All the applications above could be 
potentially useful towards reducing the impact of VBDs 
of medical and veterinary relevance.
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