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Plasmodium vivax tryptophan‑rich 
antigen reduces type I collagen secretion 
via the NF‑κBp65 pathway in splenic fibroblasts
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Abstract 

Background  The spleen plays a critical role in the immune response against malaria parasite infection, where splenic 
fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (col‑
lagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 
40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role 
of type I collagen in splenic immune function, it is important to investigate the functions of the other members 
within the PvTRAg protein family.

Methods  Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total 
of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, 
and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling 
pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors 
were determined by quantitative real-time PCR.

Results  In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all 
PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant 
PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, 
and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production 
of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs.

Conclusions  Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, 
while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.
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Background
Malaria is a devastating infectious disease, which 
imposes an immense worldwide health burden [1]. 
Among the malaria pathogens, Plasmodium vivax 
has  the  largest  geographical distribution and the  great-
est  economic impact [2–4]. Basic research on P. vivax 
has been impeded by the lack of a continuous in  vitro 
culture system, unlike the well-established continuous 
in  vitro culture system for Plasmodium falciparum [5, 
6]. Although P. vivax has been historically described as 
“benign” malaria, P. vivax malaria is increasingly recog-
nized as a cause of severe morbidity and mortality [7, 8]. 
Individuals infected with P. vivax develop various clinical 
symptoms, such as fever, anemia, splenomegaly, or severe 
malaria [9]. However, the pathogenesis of severe vivax 
syndromes remains poorly understood and requires fur-
ther research [10].

The  spleen,  which is the  largest  immune  organ, is 
mainly involved in filtering  the  blood, capturing patho-
gens,  and  activating the adaptive immune  response 
[11]. Plasmodium vivax infection can lead to significant 
changes in the spleen, which cause asymptomatic swell-
ing or complications such as rupture and hypersplen-
ism [12, 13]. The splenic fibroblasts (SFs) are essential 
for maintaining the structure and immune function of 
the spleen [14]; these are found extensively in connec-
tive tissue and secrete collagen I into the extracellular 
matrix (ECM) [15, 16]. Collagen I is the main compo-
nent of ECM, which is critical for creating the microen-
vironment needed for immune response development 
[17, 18]. Furthermore, the collagen network contributes 
to the proper functioning of the immune system of the 
spleen [19]. In the spleen, SFs secrete and remain asso-
ciated with collagen I; they combine with argyophilic 
reticular fibers, which strengthen the filtration beds [20]. 
The central function of the spleen—selective clearance 
of cells, microbes, and other particles from the blood—
depends upon these filtration beds. Such functions of 
the spleen as phagocytosis and immunologic reactivity 
derive from clearance capacity of filtration beds [21]. In 
rodents infected with malaria parasites, iRBCs circu-
late in the bloodstream and pass through the spleen fil-
tration bed, where they are diverted from arterioles to 
venous sinuses and eventually cleared by immune cells 
in the filtration bed [19], while the specific circulation 
and clearance mechanism of iRBCs in the human spleen 
remains unclear. Upon infection with Plasmodium, SFs 
are aberrantly activated and then evolve into barrier cells 
that interact with fibronectin and collagen I to form the 
blood-spleen barrier [22, 23]. The barrier cells protect 
RBCs from destruction by parasites but allow iRBCs to 
adhere and realize immune escape, which can sometimes 
lead to an imbalance in the immune response and even 

to severe disease [24, 25]. Thus, it is important to under-
stand the changes in SFs and collagen I during Plasmo-
dium infection.

The interaction between the malaria parasite and host 
cells mediated through ligand-receptor binding, espe-
cially involving malaria parasite export proteins, plays 
essential roles [26–28]. Malaria parasite export proteins 
are transported to the membrane surface of infected 
erythrocytes, which enhances the adhesion of infected 
erythrocytes to host cells and facilitates immune eva-
sion by the parasite [29]. Plasmodium falciparum eryth-
rocyte membrane protein 1 (PfEMP1) is expressed 
on the surface of mature infected erythrocytes and 
binds to endothelial cells, which allows evasion from cir-
culation and destruction in the spleen [30, 31]. The VIR14 
protein of the P. vivax vir gene family can be transported 
to the surface of reticulocytes and adheres to splenic 
fibroblasts (SFs) through the ICAM-1 receptor [23].

Similarly, the protein characterized by P. vivax trypto-
phan-rich antigens (PvTRAgs), as export protein, can be 
delivered to the surface of the erythrocyte membrane to 
bind with host cells [32, 33]. Recently, PvTRAg5 has been 
found to bind to erythrocyte receptors basigin and band 
3 to facilitate parasite growth [34]. PvTRAg23 was found 
to interact with human SFs (HSFs) and reduce collagen 
I levels [35]. The reduced collagen I levels may poten-
tially affect the hemofiltration function of the spleen, 
which facilitates parasite evasion. However, determining 
whether all PvTRAgs participate in changes in collagen 
I is interesting because of the elusive precise functions of 
PvTRAgs. Notably, there are 36 members of the PvTRAg 
family in the P. vivax reference genome Sal-I and 40 
members of the PvTRAg family in the P. vivax reference 
genome PvP01, PvPAM, and PvW1.

This study aimed to identify the interactions between 
the PvTRAgs and SFs and assess their effect on collagen I 
levels in HSFs. Here, the activation of NF-κBp65 pathway 
results in the upregulation of inflammatory factor expres-
sion in response to PvTRAgs stimulation, which induces 
a decrease in collagen I levels. Our  study  expands the 
landscape of the functional roles of PvTRAgs and raises 
interesting hypotheses for the broader Plasmodium 
TRAg gene family.

Methods
Bioinformatics analysis
To acquire the information of pvtrag gene structure, the 
genes encoding pvtrag were retrieved from PlasmoDB 
(https://​plasm​odb.​org/, PlasmoDB ID in Additional file 1: 
Table  S1). The Simple Modular Architecture Research 
Tool (SMART) (http://​smart.​embl-​heide​lberg.​de/) and 
the GPI Fungal Prediction Server (https://​mendel.​imp.​
ac.​at/​gpi/​cgi-​bin/​gpi_​pred_​fungi.​cgi) were used for the 

https://plasmodb.org/
http://smart.embl-heidelberg.de/
https://mendel.imp.ac.at/gpi/cgi-bin/gpi_pred_fungi.cgi
https://mendel.imp.ac.at/gpi/cgi-bin/gpi_pred_fungi.cgi
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prediction of signal peptides and glycophosphatidylinosi-
tol-anchored (GPI-anchored) proteins.

PCR amplifcation of pvtrag
To amplify 36 pvtrag genes, genomic DNA of the P. vivax 
Sal-I strain was extracted. The primers used for amplifi-
cation are described in Additional file 2: Table S1, and the 
genomic DNA was extracted as previously described [36]. 
The PCR reactions were conducted in a 10-μl reaction 
volume consisting of 1 μl genomic DNA as the template, 
0.5  μl of each primer (5  μM), 2  μl 5 × TransStart® Fast-
Pfu Bufer (TransGen Biotech Co., Ltd., Beijing, China), 
0.8 μl dNTPs (2.5 mM), 0.25 μl FastPfu DNA Polymerase 
(TransGen Biotech Co., Ltd.), and 4.95  μl nuclease-free 
water. The PCR amplification was performed in a Mas-
tercycler (Eppendorf, Hamburg, Germany) under the fol-
lowing program: denaturation at 95 ℃ for 2 min, followed 
by 35 cycles of 95 ℃ for 20 s, 50 ℃ for 30 s, and 72 ℃ for 
1 min, and a final extension at 72 ℃ for 5 min. The sizes 
of the PCR products were estimated using the (Trans2K 
Plus DNA marker (TransGen Biotech Co., Ltd.). All 
PCR products were sequenced by YiXin Biotechnology 
(Shanghai, China).

Expression and purification of recombinant proteins
To obtain recombinant PvTRAg proteins, Escherichia 
coli BL21 (DE3) pLysS cells (TransGen Biotechnology, 
Beijing, China) were used to express the corresponding 
proteins. Briefly, the pvtrag genes were amplified by PCR 
and cloned into the pET30 vector (Tianlin Bio, Wuxi). 
This vector adds six-histidine tags at the N- and C-ter-
minal ends, which enables easier purification and immu-
nodetection using monoclonal antibodies against the 
six-histidine tag. Next, the recombinant plasmids were 
transformed into E. coli BL21 (DE3) pLysS cells; 200 ml 
Luria-Bertani (LB) medium supplemented with 100 mg/
ml ampicillin was inoculated with a transformed bacte-
rial pre-culture and shaken at 37 ℃ until the cell density 
reached an OD600 of approximately 0.6–0.8; protein 
expression was induced with 0.1  mM isopropyl-β-D-
thiogalactoside (IPTG) at 16 ℃ for 18–20  h [37]. Then, 
culture effluent was collected, and cells were harvested by 
centrifugation at 300 × g for 30 min at 4 ℃. The rPvTRAg 
proteins were purified under nondenaturing condi-
tions by a biotechnology company (Youlong Bio, Shang-
hai, China) using a Ni agarose column. PvTRAgs were 
mixed with the protein loading buffer, boiled at 100 ℃ for 
5 min, and separated in 10% sodium dodecyl sulfate-pol-
yacrylamide gel electrophoresis (SDS-PAGE) gels. Next, 
they were stained with Coomassie Brilliant Blue (R250). 
For immunoblotting, PvTRAgs were detected using 
horseradish peroxide (HRP)-coupled anti-His antibody 
(1:5000, Abcam, Cambridge, MA, USA).

Cell culture
HSFs (ScienCell, CA, USA) were cultured in fibroblast 
medium (ScienCell, USA) containing 1% fibroblast 
growth supplement, 2% fetal bovine serum, and 1% anti-
biotic solution (P/S) at 37 ℃ in a humidified incubator 
containing 5% CO2 [38]. Prior to culturing HSFs, dishes 
need to be coated with polylysine (ScienCell, USA) for 
2  h at room temperature to increase cell adhesion. The 
plates were rinsed twice with sterilized ultrapure water, 
and 8  ml complete medium was added to culture the 
cells. For cell passaging, a 95% fusion of cells is required.

Western blot analysis
HSFs were plated in 12-well culture plates and incubated 
at 37 ℃ in a cell incubator. When the cell density was 
about 70%, medium was removed and fresh medium con-
taining PvTRAgs was added.

To analyze the binding capacity of PvTRAgs to HSFs, 
PvTRAgs were co-incubated with HSFs for 4 h. To assess 
the effects of PvTRAgs on collagen I synthesis, PvTRAgs 
were co-incubated with HSFs for 48  h. To examine 
the activation of cellular signaling, HSFs were treated 
with PvTRAgs for 0.5  h. The medium was discarded, 
and cells were washed once with ice-cold PBS after the 
experimental time period. Cells were then collected and 
resuspended in cold RIPA lysis buffer (Beyotime, China) 
containing protease and phosphatase inhibitors. Protein 
concentration was determined by BCA assay (Beyo-
time, China). Then, total protein (10–20  µg) was mixed 
with protein loading buffer, and all samples were boiled 
and separated on 10% SDS-PAGE. The separated pro-
teins were transferred to polyvinylidene difluoride mem-
branes. The membranes were blocked with closure buffer 
(1 × TBST, 5% milk powder) for 2 h at room temperature. 
They were then incubated with anti-His (1:1000, Abcam, 
Cambridge, MA, USA), anti-collagen I (1:1000, Abcam), 
anti-NF-κBp65 (1:1000, CST, Danvers, MA, USA), anti-
phospho-NF-κBp65 (1:1000, CST), anti-FAK (1:1000, 
CST), anti-phospho-FAK (1:1000, CST), anti-p38 MAPK 
(1:1000, CST), anti-phospho-p38 MAPK (1:1000, CST), 
or anti-GAPDH (1:1000, Abcam) at 4 ℃ overnight. After 
washing with TBST, the membrane was incubated for 
1 h with secondary antibody conjugated to HRP (1:5000, 
Abcam, Cambridge, USA). Bands were visualized by an 
ECL detection kit (XINSAIMEI, Suzhou, China), and 
protein expression was quantified with Image J (National 
Institutes of Health, MD, USA). Analysis of WB results 
was conducted using Image J software.

RNA extraction and quantitative real‑time PCR
To examine the levels of cellular inflammatory factor 
mRNA, qPCR was performed as previously described 
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[35]. PvTRAgs were co-incubated with HSFs after 48  h 
total RNA had been isolated from HSFs in accord-
ance with the protocols of the manufacturer (Yeasen 
Biotechnology, Shanghai, China). The extracted total 
RNA was further processed to remove genomic DNA 
and then reverse transcribed into complementary DNA 
(cDNA) using 4 × HiFiScript RTMaster Mix, following 
the instructions for the RNA Reverse Transcription Kit 
(Yeasen Biotechnology, Shanghai, China). RT-PCR was 
performed in triplicate with three independent sam-
ples for each experimental group in a LightCycler480 II 
apparatus (Roche, USA) with SYBR Green Master Mix 
(No Rox) (Yeasen Biotechnology, Shanghai, China). The 
amplification program followed a two-step method. Ther-
mal cycling conditions were as follows: pre-denaturation 
at 95 ℃ for 5 min, followed by 40 PCR cycles at 95 ℃ for 
10 s and 60 ℃ for 30 s. The ratio of each target gene was 
determined using GAPDH as an internal control. The rel-
ative expression levels of genes were calculated from the 
quantification cycle (Cq) value and standardized by the 
2−ΔΔCq method. Primers for amplified genes (IL-1β, IL-6, 
and TNF-α) are presented in Additional file 2: Table S2.

Statistical analysis
Immunoblotting and qRT-PCR analyses were repeated 
three times (n = 3). All statistical analyses were per-
formed using GraphPad Prism 9.5 software (GraphPad, 
San Diego, CA, USA). Data from two or more groups 
were compared using one-way ANOVA, and differences 

between the two groups were analyzed using t-test. 
P < 0.05 was considered statistically significant (*P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001).

Results
Expression and purification of PvTRAgs
We summarized the structural features of PvTRAgs to 
investigate their molecular function. The smallest protein 
in the PvTRAg protein family was PvTRAg26 (223 amino 
acids; 26  kDa), and the largest protein was PvTRAg18 
(2662 amino acids; 309 kDa). All PvTRAg proteins con-
tain a tryptophan-rich structural domain in the C-termi-
nal region. Characterization information for all members 
of the PvTRAgs is presented in Additional file 3: Table S3. 
We attempted to express and purify the recombinant 
PvTRAgs (rPvTRAgs) from E. coli to further character-
ize PvTRAgs function. Fusion proteins were successfully 
expressed for 23 of the 36 clones. The rPvTRAgs were 
purified under nondenaturing conditions (Fig.  1a). Cor-
responding immunoblotting assays were performed with 
anti-His tag monoclonal antibodies (Fig. 1b).

rPvTRAg treatment leads to different changes in collagen I 
levels in HSFs
The successfully expressed rPvTRAgs were co-
incubated with HSFs for 4  h to explore the interac-
tion between PvTRAgs and HSFs. Nine PvTRAgs 
(PvTRAg1, PvTRAg4, PvTRAg5, PvTRAg13, 

Fig.1  SDS-PAGE and Western blot analysis of purified His-tag recombinant PvTRAgs. a SDS-PAGE analysis of purified PvTRAgs was performed 
under denaturing and reducing conditions. Gel protein content was detected by Coomassie blue staining. b Western blot analysis with anti-His 
antibody was performed to confirm the expression of His-tag on the recombinant protein. The molecular weight of the protein band includes 
the size of 6X His-tag. M: Protein marker; 1,2…36: PvTRAg proteins
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PvTRAg17, PvTRAg19, PvTRAg23, PvTRAg33, and 
PvTRAg34) were identified as capable of binding to 
HSFs (Fig. 2a).

HSFs were treated with rPvTRAgs known to bind with 
cells for 48 h to explore whether other PvTRAgs interact-
ing with HSFs affect collagen I. The results showed that 
only PvTRAg5 and PvTRAg23 significantly reduced the 
collagen I levels in HSFs (P < 0.0001, Fig. 2b). This result 
suggests that not all PvTRAgs (binding to HSFs) resulted 
in a decrease in collagen I levels.

HSFs were treated with rPvTRAgs (without bind-
ing to HSFs) to explore whether rPvTRAgs would 
act directly on HSFs. Despite certain proteins in the 
PvTRAg family not binding to HSFs, PvTRAg16, 
PvTRAg30, and PvTRAg32 also significantly reduced 
collagen I levels (P < 0.0001, Fig. 2c). These results pro-
vide strong evidence that PvTRAgs can specifically sig-
nal HSFs to decrease collagen I independent of receptor 
and ligand anchoring.

Fig.2  The levels of collagen I secreted by HSFs after stimulated by recombinant PvTRAgs. a Screening results of PvTRAg proteins binding 
to HSFs; b 5 × 106 HSFs were incubated with bindable recombinant proteins at the corresponding concentrations. After 48 h, the cells were lysed 
and the expression of collagen I in HSFs was detected by immunoblotting (left), and the gray values were compared between the two groups using 
GAPDH as an internal reference (right); c 5 × 106 HSFs were incubated with unbindable recombinant proteins at the corresponding concentrations. 
After 48 h, the cells were lysed and the expression of collagen I in HSFs was detected by immunoblotting, and the gray values were compared 
between the two groups using GAPDH as an internal reference. M: Protein marker; N: untreated HSF cells; 1,4…36: PvTRAg proteins. Statistical 
analyses were carried out by one-way ANOVA with Dunnett’s multiple comparisons test (ns P ≥ 0.05; *P < 0.05; **P < 0.01, ***P < 0.001, ****P < 0.0001)
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Type I collagen downregulation is linked to NF‑κB 
signaling pathway activation
HSFs were treated with rPvTRAgs (PvTRAg5, 
PvTRAg16, PvTRAg30, and PvTRAg32) for 0.5  h to 
investigate the signaling pathway responsible for the 
reduction in collagen I levels. The results showed that 
three signaling pathways (NF-κBp65, FAK, and P38 
MAPK) were activated after stimulation by PvTRAg5, 
PvTRAg16, PvTRAg30, and PvTRAg32 (Fig.  3a). HSFs 
were treated with appropriate signaling pathway inhibi-
tors (Bay 11–7082, SB203580, and TAE226) to identify 

which pathways mediate the reduction in collagen I 
levels. After 1  h inhibitor treatment, HSFs were sub-
sequently co-incubated with rPvTRAgs for 48  h. The 
results showed that collagen I levels increased after 
inhibition of the NF-κBp65 pathway, whereas they 
decreased after inhibition of the other pathways com-
pared with the control group. Notably, the results are 
consistent with those for four proteins mentioned 
above (Fig. 3b–d). Therefore, only the NF-κBp65 path-
way was found to be responsible for the decrease in 
collagen.

Fig. 3  NF-κBp65 pathway mediates decreased collagen I. a The 5 × 106 HSFs were treated with 50 mg/ml rPvTRAg5, rPvTRAg16, rPvTRAg23, 
rPvTRAg30, and rPvTRAg32, and the treated cells were collected and incubated with the corresponding signaling pathway antibodies, respectively. 
The activation status of each group of pathways was detected by immunoblotting, and GAPDH was used as an internal reference. b HSFs were 
pretreated with the NF-κBp65 signaling pathway inhibitors for 1 h; c HSFs were pretreated with the FAK or P38 MAPK signaling pathway inhibitors 
for 1 h; 50 mg/ml rPvTRAg5, rPvTRAg16, rPvTRAg23, rPvTRAg30, and rPvTRAg32 stimulated the treated and untreated cells; 48 h later, the expression 
of collagen I was detected in each group by immunoblotting, and the comparison was made by using GAPDH as an internal involved group. Plus 
(+) indicates added; minus (−) indicates not added
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Expression of IL‑1β, IL‑6, and TNF‑α decreases type I 
collagen in HSFs
The HSFs were treated with PvTRAgs for 48 h (PvTRAg5, 
PvTRAg16, PvTRAg30, and PvTRAg32) to assess the 
levels of inflammatory factors. Meanwhile, HSFs stimu-
lated with PvTRAg1 (bound to HSFs) and PvTRAg2 (not 
bound to HSFs) were used as control groups.

The results showed that IL-1β, IL-6, and TNF-α levels 
were significantly higher in the groups simulated with 
rPvTRAg5, rPvTRAg16, rPvTRAg23, rPvTRAg30, and 
rPvTRAg32 than in the control group (P < 0.0001, Fig. 4). 
Overall, PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, 
PvTRAg30, and PvTRAg32) activated the NF-κB p65 
signaling pathway in HSFs. This activation triggered 
an inflammatory response, which ultimately led to a 
decrease in the collagen I levels.

Discussion
TRAgs have been studied in a wide range of Plasmodium 
spp., but a clear molecular function for these antigens has 
not been determined [39]. Plasmodium vivax exhibits a 
higher abundance of TRAgs than other human malaria 
parasites, and their occurrence in clusters along chromo-
somes suggests expansion through gene duplication and 
diversification. Gene expansion is always accompanied 
by functional diversification [40]. Previously found stage-
specific expression of pvtrag genes confirms their func-
tional diversification in the life cycle of parasites [36]. 
Notably, PvTRAg23 has been identified to alter collagen 
I levels in HSFs. Therefore, we aimed to characterize 23 
PvTRAgs by examining their ability to bind to HSFs and 
their impact on collagen levels. Our findings demonstrate 
that PvTRAgs can specifically reduce collagen I levels by 
activating the NF-κB p65 signaling pathway.

Binding of merozoite proteins to host cells is criti-
cal for their invasion, immune evasion [41, 42], and 

damage to host cells and tissues [43]. After  infec-
tion  of human erythrocytes, malaria parasite export 
proteins  are transported to the  iRBC  membrane and 
act as mediators for interactions with host cells [44]. 
Similarly, PvTRAgs exhibit strong immunogenicity and 
partial binding to erythrocytes, which contributes to 
the pathogenesis of malaria [33]. Here, PvTRAgs were 
co-incubated with HSFs, and nine proteins were identi-
fied for binding to HSFs (Fig.  2a). Recent studies have 
shown that P. vivax-infected reticulocytes can adhere 
to HSFs via VIR14 and may avoid clearance by mac-
rophages [23, 45]. Whether the binding of PvTRAg to 
HSFs contributes to P. vivax adhesion to HSFs remains 
to be determined and will not be discussed further 
here. Among the nine proteins proteins that could bind 
to HSFs, PvTRAg5 and PvTRAg23 decreased collagen 
I levels (Fig.  2b). This finding suggests that the recep-
tor  might not be structurally or functionally altered 
even in the presence of receptor–ligand interaction. 
Expression of the PvTRAg23 gene was high in Brazil-
ian isolates; however, it was relatively low in Cambo-
dian and East African isolates [46]. The PvTRAg23 gene 
expressions vary between different P. vivax strains as 
a contributing factor to antigenic variation [46–48], 
which may favor different immune evasion strategies 
for different P. vivax strains [49].

Although the specific binding of receptors and 
ligands is fundamentally important for various cellu-
lar processes and biochemical activities [50, 51], some 
proteins do not act through the formation of recep-
tor–ligand complexes [52, 53]. Non-adhesive PvTRAgs 
may also play a crucial role in parasite growth [33]. 
The results show that three PvTRAgs (PvTRAg16, 
PvTRAg30, PvTRAg32) can directly act on HSFs to 
reduce the collagen I levels (Fig. 2c). These results indi-
cate that the members of the PvTRAg protein family 

Fig.4  Elevated expression of IL-1β, IL-6, and TNF-α in HSFs. 5 × 106 HSFs were treated with 50 mg/ml rPvTRAg1, rPvTRAg2, rPvTRAg5, rPvTRAg16, 
rPvTRAg23, rPvTRAg30, and rPvTRAg32, respectively, and RNA was extracted from treated and untreated groups after 48 h. The expression 
of the relevant cytokines was detected by qPCR and compared with that of the control group. Three independent experiments have been 
performed. Statistical analyses were carried out by one-way ANOVA with Dunnett’s multiple comparisons test (ns P ≥ 0.05; *P < 0.05; **P < 0.01, 
***P < 0.001, ****P < 0.0001)
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regulate collagen I levels through direct and indirect 
interactions with HSFs, which lead to a reduction in 
collagen I levels.

Fibroblasts produce large amounts of collagen I, which 
is the most abundant component of the ECM [15, 54]. 
The ECM can perform microbial recognition and phago-
cytosis in the immune response to infection [55] and can 
convey specific signals to immune cells encountering or 
navigating through it [56]. Furthermore, the collagen 
network contributes to the proper functioning of the 
immune system in the spleen [19, 20]. Overall, reduced 
expression of collagen I leads to altered ECM, which 
affects ECM-mediated functions in the spleen. Therefore, 
a decrease in collagen I levels by PvTRAgs can influence 
immune functions in the spleen, such as blood filtration 
and trapping of pathogens, which may ultimately contrib-
ute to parasite escape. Recently, a study has unequivo-
cally shown that the spleen sustains a very large biomass 
of non-phagocytosed asexual P. vivax parasites and P. 
vivax malaria is mainly a cryptic erythrocytic infection 
of the spleen [57, 58]. Impaired splenic blood clearance 
contributes to parasite immune evasion and may favor 
the accumulation of malaria parasites in the spleen to 
enhance malaria parasite survival and replication in the 
spleen.

Altered cellular collagen levels are frequently accom-
panied by the activation of the NF-κBp65, FAK, and P38 
MAPK signaling pathways [59–61]. PvTRAg23 mediates 
the activation of the NF-κBp65 signaling pathway, which 
leads to the upregulation of IL-1β, IL-6, and TNF-α [35]. 
This phenomenon inhibits the collagen I levels in HSFs 
[35]. In this study, the four other PvTRAgs, namely, 
PvTRAg5, PvTRAg16, PvTRAg30, and PvTRAg32, were 
also found to be involved in the reduction in collagen I 
levels in HSFs. The reduction in collagen I levels was 
determined to be mediated by the NF-κBp65 signaling 
pathway (Fig.  3a–c). Elevated levels of relevant inflam-
matory factors (IL-1β, IL-6, and TNF-α) were observed, 
as expected (Fig.  4). IL-1β, IL-6, and TNF-α have been 
found to inhibit the production of type I collagen [35]. 
The same situation was present in diabetic rat cardio-
myocytes, where levels of TNF-α, IL-6, and IL-1b were 
negatively correlated with mRNA expression of collagen I 
[62]. Therefore, these inflammatory cytokines play a role 
in the regulation of collagen expression.

Despite our discovery of the function for PvTRAgs, 
some limitations need further improvement, which lays 
the groundwork for the exploration of the molecular 
functions of this unique family of Plasmodium protein. 
First, 13 recombinant PvTRAgs were unsuccessfully 
expressed. Thus, the functional characterization of 
these proteins needs further determination. Second, 
the receptor through which PvTRAgs bind to HSFs was 

not identified, and the role of ligand-receptor binding in 
causing a decrease in collagen I was unclear. Third, the 
activation mechanism of the NF-κBp65 signaling path-
way by PvTRAgs was unknown.

Conclusions
Five members of the PvTRAg family of proteins 
(PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and 
PvTRAg32) are capable of activating NF-κBp65 in HSFs, 
which subsequently results in an inflammatory response 
and ultimately a decrease in collagen I levels. The reduced 
collagen levels caused by PvTRAgs may impact spleen 
functions, such as clearance and filtration, which may 
ultimately facilitate the realization of parasite escape.
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