
Varga et al. Parasites & Vectors          (2024) 17:140  
https://doi.org/10.1186/s13071-024-06231-7

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Parasites & Vectors

Accelerating targeted mosquito control 
efforts through mobile West Nile virus detection
Zsaklin Varga1,2  , Rubén Bueno‑Marí3,4  , José Risueño Iranzo3  , Kornélia Kurucz1,2  , Gábor Endre Tóth1,2  , 
Brigitta Zana1  , Safia Zeghbib1  , Tamás Görföl1  , Ferenc Jakab1,2   and Gábor Kemenesi1,2*   

Abstract 

Background Different mosquito control strategies have been implemented to mitigate or prevent mosquito‑related 
public health situations. Modern mosquito control largely relies on multiple approaches, including targeted, specific 
treatments. Given this, it is becoming increasingly important to supplement these activities with rapid and mobile 
diagnostic capacities for mosquito‑borne diseases. We aimed to create and test the applicability of a rapid diagnostic 
system for West Nile virus that can be used under field conditions.

Methods In this pilot study, various types of adult mosquito traps were applied within the regular mosquito moni‑
toring activity framework for mosquito control. Then, the captured specimens were used for the detection of West 
Nile virus RNA under field conditions with a portable qRT‑PCR approach within 3–4 h. Then, positive samples were 
subjected to confirmatory RT‑PCR or NGS sequencing in the laboratory to obtain genome information of the virus. We 
implemented phylogenetic analysis to characterize circulating strains.

Results A total of 356 mosquito individuals representing 7 species were processed in 54 pools, each containing 
up to 20 individuals. These pools were tested for the presence of West Nile virus, and two pools tested positive, 
containing specimens from the Culex pipiens and Anopheles atroparvus mosquito species. As a result of subsequent 
sequencing, we present the complete genome of West Nile virus and Bagaza virus.

Conclusions The rapid identification of infected mosquitoes is the most important component of quick response 
adulticide or larvicide treatments to prevent human cases. The conceptual framework of real‑time surveillance can 
be optimized for other pathogens and situations not only in relation to West Nile virus. We present an early warning 
system for mosquito‑borne diseases and demonstrate its application to aid rapid‑response mosquito control actions.

Keywords Mosquito‑borne pathogens, Surveillance, Prevention, Field‑based, Rapid diagnostics, Bagaza, Panflavivirus, 
Heminested‑PCR, NGS sequencing

Background
There are multiple endemic mosquito-borne viruses in 
Europe with human or animal health relevance. In recent 
decades an increasing number of autochthonous cases 
were detected with these viruses [1, 2]. In addition, exotic 
viruses are also emerging in some parts of Europe, such 
as Dengue virus with local transmission in France in 2022 
[3] and in Italy in 2023 [4].

One of the most significant endemic human patho-
genic mosquito-borne viruses in Europe is the West Nile 
virus (WNV). WNV is a positive-sense RNA virus from 
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the Flaviviridae family. The virus has a complex life cycle 
involving birds, mosquitoes, and humans. The virus is 
transmitted to humans through the bite of an infected 
mosquito. The mosquito gets the virus from biting an 
infected bird. The virus then replicates in the mosquito’s 
body and is passed on to humans when the mosquito 
bites them. It can cause fever, headache, body aches, 
nausea, vomiting, and sometimes swollen lymph glands 
or a skin rash. In severe cases, West Nile virus can cause 
neurological illnesses such as encephalitis or meningitis 
[5–7].

It was first described in the continent in 1960; since 
then, the virus has appeared in many European coun-
tries such as France, Cyprus, Portugal, Hungary, etc. [8]. 
In these countries, genetic lineage 1 and lineage 2 of the 
virus have been responsible for human and animal infec-
tions so far [9].

In Spain, the most significant region of WNV circula-
tion is the southern part of the country where multiple 
outbreaks were recorded based on the data from the 
last decade [2, 10–12]. The year 2020 was exceptional 
for WNV activity, when an outstanding WNV epidemic 
took place in southern Spain, affecting Andalusia, Seville, 
Catalonia, and Valencia, causing 77 human cases and 8 
deaths [13–15].

It is most commonly found in Africa, the Middle East, 
and parts of Asia, but it has also been found in Europe, 
North America, and Australia.

West Nile virus has a complex life cycle involving birds, 
mosquitoes, and humans. The virus is transmitted to 
humans through the bite of an infected mosquito. The 
mosquito becomes infected when it feeds on an infected 
bird. The virus then replicates in the mosquito’s body and 
is passed on to humans when the mosquito bites them.

Culex pipiens mosquito (Linnaeus, 1785) is considered 
as the primary vector of WNV but actual vector com-
petence may vary between regions and other species 
can also contribute to its spread. Based on available lit-
erature data, some Aedes species, such as Aedes albopic-
tus (Skuse, 1894), and members of the genus Anopheles 
(Meigen, 1818) can be considered competent vectors as 
well [16–21].

It is also a common attribute of Flaviviruses that mul-
tiple viruses are naturally co-circulating between avian 
and mosquito hosts in the same ecosystem. WNV often 
co-circulates with Bagaza or Usutu viruses [22]. Bagaza 
virus (BAGV) belongs to the Flaviviridae family, Ntaya 
serocomplex. It was first isolated from Culex mosquito 
species in the 1966 outbreak in Bagaza, Central Africa 
[23]. The virus is pathogenic in red-legged partridges and 
caused an outbreak in Cadiz, Spain, in 2019 [24].

There are multiple mosquito monitoring programmes 
in Europe, using different strategies, but most of the data 

still come from event-based (human cases) and indicator-
based surveillance activities [25–27]. Whether it is mos-
quito surveillance or event-based data, the resulting data 
will not be immediately available; they will take time to 
be processed in the laboratory or made available in the 
ECDC (European Centre for Disease Prevention and 
Control) [25–27]. Thus, the necessary actions are not 
real time. In this study we demonstrate a WNV detec-
tion approach that uses on-site PCR technique to pro-
vide rapid surveillance results in 3–4 h, which is a rapid 
protocol that can be implemented in the field, followed 
immediately by the necessary targeted control after virus 
detection. We complemented the surveillance activity 
with additional complete genome sequencing in the lab-
oratory and provided genome data of BAGV and WNV 
from southern Spain in 2021.

Methods
Trapping and virus detection
Adult mosquito collection was carried out in two Span-
ish regions: Valencia and Andalusia, during the WNV 
season, between 23 August and 8 September 2021 with 
overnight trapping. During overnight trapping (from 
6  p.m. to 8 a.m.), trap nets were changed daily, except 
in a few cases because of the distance between sites and 
weather conditions. If a trap did not catch any or caught 
insufficient quantities on a given night, the net was left 
out for a longer period. Details of each sample location 
are summarized in  Additional file 1: Table S1. Based on 
data from previous years, 25 sites were selected, mostly 
in suburban areas, with abundant local mosquito popula-
tions [28]. Trapping took place at 7 sites in the province 
of Valencia and 18 sites in Andalusia (Fig.  1). Various 
sampling methods were used mostly with BG-Sentinel 
traps (both with lure and  CO2) and in some cases supple-
mented with CDC Light traps (with yeast as  CO2 source) 
or BG-Mosquitaire (with lure). As the type of trap was 
not important in the testing of our protocol, any other 
type of adult mosquito trap can be used for the work. 
After collection from traps, a freezing box was used as an 
euthanization tool for the mosquitoes. The box operated 
with general ice accumulators, which were pre-frozen in 
−20  °C freezers. Following the freezing cycle, the mos-
quitoes underwent sex separation and morphological 
identification [29].  Sampling details are summarized in 
Table 1.

Female mosquitoes, due to their blood-feeding behav-
iour, play an active role in virus transmission. Analysing 
these mosquitoes for the presence of the virus provides 
direct evidence of virus circulation in the region. There-
fore, we focused on processing female mosquitoes, sys-
tematically categorizing and grouping them by species, 
sampling site, and collection date. This approach was 
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employed to facilitate targeted West Nile virus (WNV) 
testing in separate, well-defined pools. To align with our 
sampling numbers and ensure rapid and efficient sample 
processing, we decided to use 20 individuals per pool.

Our concept aimed to streamline the detection process 
using mobile devices and minimize the associated labo-
ratory procedures, so we selected the following meth-
ods and types of equipment accordingly. Samples were 
homogenized manually (sterile quartz sand and 500  µl 
PBS buffer were added to each pool) using sterile single-
use plastic sticks. Total RNA was extracted using the 
Beckman Coulter RNAdvance Viral XP 1.5-ml Tube Pro-
tocol (Beckman Coulter, Inc., CA, USA), following the 
manufacturer’s protocol. For the magnetic bead-based 
nucleic acid extraction we used the MagJET Separation 
Rack (Thermo Fisher  Scientific™). Samples were tested 
for WNV RNA by qRT-PCR with previously published 
primers [30]. Primers WN10533-10552 (AAG TTG AGT 
AGA CGG TGC TG) and WN10625-10606 (AGA CGG 
TTC TGA GGG CTT AC) were used to amplify a con-
served 92-bp region of the WNV 3—noncoding region. 
Besides probe WN10560-10579 (CTC AAC CCC AGG 
AGG ACT GG) was used for the qPCR. Briefly, the 

qRT-PCR was performed on  MyGo® Mini S Real-Time 
PCR instrument (IT-IS Life Science Ltd.), a compact PCR 
machine that is suitable for use in the field, using the Bril-
liant III Ultra-Fast QPCR Master Mix (Agilent Technolo-
gies, CA, USA).

The total qRT-PCR master mix was 15 µl containing a 
total of 1 µl primers (50 µM), 0.25 µl probe (50 µM), 10 µl 
Mastermix, 0.2  µl dithiothreitol, 1  µl RT block enzyme, 
and 2.55  µl nuclease-free water. The PCR master mixes 
used in the field were prepared in advance and delivered 
frozen to the site; then, 5 µl extracted RNA of the sam-
ples (templates) was added to the master mix on site. The 
thermal cycling programme was set as follows: 10 min at 
50 ℃ for reverse transcription, 3 min at 95 ℃ for denatur-
ation, and 45 cycles of 10 s at 95 ℃ and 25 s at 60 ℃ for 
amplification [30]. All steps are field compatible, extrac-
tion does not require a homogenizer or centrifugal step 
because of the beads, and the PCR machine is compact 
and portable. Thanks to these features, the full protocol 
for in  situ WNV detection from emptying the traps to 
PCR results takes about 3–4 h with the above-mentioned 
conditions, depending on the number of investigated 
mosquitoes.

Fig. 1 Mosquito sampling sites in the provinces of Valencia (7) and Andalusia (18), Spain
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Table 1 Pools processed and tested for West Nile virus

Place (e.g. town, village) Trap type Mosquito species Number of 
females

Pool ID Positivity/Ct value

Valencia, Viveros Devesa BG sentinel + BG lure7 Aedes albopictus 4 1 Negative

Valencia, Racó de l’Olla BG sentinel + BG lure 7 Culex pipiens 1 2 Negative

Valencia, Viveros Devesa BG sentinel + BG lure 7 Aedes albopictus 1 3 Negative

Valencia, Racó de l’Olla BG sentinel + BG lure 7 Aedes albopictus 4 4 Negative

Valencia, Viveros Devesa BG sentinel + BG lure 7 + CO2 Aedes albopictus 8 5 Negative

Valencia, Racó de l’Olla BG sentinel + BG lure 7 + CO2 Aedes albopictus 3 6 Negative

Valencia, Villamarxant CDC‑light trap Culex pipiens 3 7 Negative

Andalusia, Coria BG sentinel lure Anopheles atroparvus
Culex pipiens

3
2

8/1
8/2

Positive / 17
Positive / 28

Andalusia, Utrera BG sentinel lure Culex pipiens 50 9/1 Negative

Andalusia, Utrera BG sentinel lure Culex pipiens 16 10 Negative

Andalusia, Coria BG sentinel lure Culex perexiguus
Culex pipiens

1
2

12/1
12/2

Negative
Negative

Andalusia, Coria BG sentinel lure Culex pipiens 1 13/1 Negative

Andalusia, Utrera BG sentinel lure Culex pipiens 1 14 Negative

Andalusia, Utrera BG sentinel lure Culex pipiens 3 15 Negative

Andalusia, Utrera BG sentinel lure Anopheles atroparvus
Culex pipiens

3
1

16/1
16/2

Negative
negative

Andalusia, Utrera BG sentinel lure Culiseta longiareolata
Culex pipiens

2
19

17/1
17/2

Negative
Negative

Andalusia, Coria BG sentinel lure Culex pipiens 2 18 Negative

Andalusia, Utrera BG sentinel lure Culex pipiens 1 19 Negative

Andalusia, Villamanrique BG sentinel lure Culex pipiens 10 20 Negative

Andalusia, Casares Sierra BG sentinel lure Culex pipiens
Aedes albopictus
Culiseta longiareolata
Culex theileri

4
14
1
1

21/1
21/2
21/3
21/4

Negative
Negative
Negative
Negative

Andalusia, Vejer de la Frontera BG sentinel lure Culex pipiens 12 22 Negative

Andalusia, Vejer de la Frontera BG sentinel lure Culex pipiens
Culex perexiguus

3
2

23/1
23/2

Negative
Negative

Andalusia, Coria BG sentinel lure Anopheles atroparvus 
Culex perexiguus

3
1

24/1
24/2

Negative
Negative

Andalusia, Utrera BG sentinel lure Culex pipiens 1 25 Negative

Andalusia, Utrera BG sentinel lure Culex pipiens 2 26 Negative

Andalusia, Coria BG sentinel lure Culex perexiguus
Culex pipiens
Anopheles atroparvus

2
2
8

27/1
27/2
27/3

Negative
Negative
Negative

Andalusia, Casares—Secadero BG sentinel lure Aedes albopictus
Culex pipiens

1
1

28/1
28/2

Negative
Negative

Andalusia, Los Palacios y Villafranca (Utrera) CDC‑light trap Culex perexiguus
Culex pipiens

1
1

29/1
29/2

Negative
Negative

Andalusia, Villamanrique BG sentinel lure Culex pipiens 2 30 Negative

Andalusia, Coria BG sentinel lure Anopheles atroparvus
Culex pipiens
Culex perexiguus

2
2
1

31/1
31/2
31/3

Negative
Negative
Negative

Andalusia, Vejer de la Frontera BG sentinel lure Culex pipiens
Culex perexiguus

49
5

32/1
32/2

Negative
Negative

Valencia, Nules BG‑mosquitaire Culex pipiens
Anopheles atroparvus

1
5

33/1
33/2

Negative
Negative

Valencia, Xilxes BG‑mosquitaire Anopheles atroparvus 8 34 Negative

Valencia, Viveros Devesa Lab (larvae dipping) Aedes albopictus 4 35 Negative

Valencia, Racó de l’Olla Lab (larvae dipping) Culiseta longiareolata 1 36 Negative
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To confirm the results of the above-mentioned in situ 
WNV detecting protocol, following the field-based sur-
veillance activity, a previously published heminested 
RT-PCR was performed on the positive pools with 
5  µl sample under laboratory conditions [31], and the 
amplified 250  bp of the NS5 gene was sent for Sanger 
sequencing (Eurofins Genomics Sequencing Laboratory, 
Germany). The results of the Sanger sequencing were 
inconclusive, showing mixed amplicons. Therefore, we 
decided to use Illumina sequencing on the Anopheles 
atroparvus pool to obtain the whole genomes and to dis-
tinguish possible mixed sequences.

Genome sequencing and analysis
Following the total nucleic acid isolation and reverse 
transcription, DNA was amplified by random PCR. RNA 
library was generated using the NEBNext Ultra II Direc-
tional RNA Library Prep for Illumina (NEB, Ipswitch, 
MA, USA). Briefly, 10 ng of total RNA was used as input 
for fragmentation step, and the cDNA generation was 
performed using random primers. Thereafter, the cDNA 
was end-prepped and adapter-ligated; then, the library 
was amplified according to the manufacturer’s instruc-
tions. The quality of the libraries was checked on Agi-
lent 4200 TapeSation System using D1000 Screen Tape 
(Agilent Technologies, Palo Alto, CA, USA); the quantity 
was measured on Qubit 3.0 (Thermo Fisher Scientific, 
Waltham, MA, USA). Illumina sequencing was per-
formed on the NovaSeq 6000 instrument (Illumina, San 
Diego, CA, USA) with 2 × 151 run configuration. Raw 
reads were quality checked with FastQC v0.12.1 and error 
corrected and quality trimmed with NanoFilt v2.8.0. 
Genomes and genome parts were de novo assembled 
with SPAdes v3.15.5 (raw reads as SPAdes has a built-
in error correction and quality trimming function) and 
MEGAHIT v1.2.9 (corrected reads) and were mapped 
to the closest matches in Genbank in Geneious Prime 
v2023.1.1. Illumina reads were mapped to the consensus 
sequences from the former step and further corrected in 
Geneious Prime v2023.1.1. For multiple sequence align-
ments, sequence, and phylogenetic analyses, Geneious 
Prime 2023.1.1 and PhyML software version 3.0 were 
used. Phylogenetic analysis of WNV sequence was 
performed using PhyML software version 3.0. Model 
selection was accomplished using the model selec-
tion algorithm built into the software [32]. The model 

selection was run according to the Bayesian information 
criterion [33]. The best model was the GTR + G + I with 
1000 bootstraps. For BAGV neighbour-joining phyloge-
netic tree was inferred with 1000 bootstrap replicates in 
Geneious Prime 2023.1.1.

Results and discussion
An increasing body of research is endorsing the transi-
tion from event-based surveillance to forecasting or early 
warning system approaches in surveillance practices [34, 
35]. Most of the studies are based on virus surveillance 
by detecting WNV from human samples or by processing 
mosquitoes that have been collected over several years 
[36–39].

During the field sampling, 356 adult mosquitoes were 
trapped representing 7 species. Occasionally, where 
larvae were present on site, we collected them with 
larva dipping method, although only two pools were 
included in the study with this method (Additional file 1: 
Table  S1). Among the 54 pools that were processed for 
WNV testing on site by qRT-PCR, two pools were posi-
tive for WNV RNA. The two positive pools contained 
two individuals of Culex pipiens (28 Ct) and three indi-
viduals of Anopheles atroparvus mosquitoes (17 Ct) 
from the village of Coria, Andalusia, respectively. This is 
in line with evidence showing that Andalusia became a 
WNV hotspot during the last few years [39]. During the 
identification process, we observed that the abdomens of 
the mosquitoes were empty. This observation led us to 
conclude that the positivity for the West Nile virus origi-
nated from the mosquitoes themselves rather than from a 
blood meal they may have ingested.

Only partial genomic data were recovered dur-
ing the confirmatory PCR experiments from the pool 
containing Cx. pipiens, probably because of low virus 
titres. Therefore, this sample was not subjected to NGS 
sequencing. However, we were able to retrieve complete 
and nearly complete viral genomic sequences from 
the An. atroparvus sample. The mean coverage was 
127.01X ± 594.42 and 111.49X ± 538.62 in case of WNV 
and Bagaza genomes, respectively. Illumina sequencing 
verified the mixed positive status of the sample con-
taining West Nile and Bagaza viruses (Genbank acces-
sion numbers OR472391 and OR472392). Based on 
these results we documented the co-circulation of these 
viruses in the region within An. atroparvus species. 

Table 1 (continued)

Place (e.g. town, village) Trap type Mosquito species Number of 
females

Pool ID Positivity/Ct value

Valencia, Nules BG‑mosquitaire Aedes caspius
Aedes detritus

32
30

37/1
37/2

Negative
Negative
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Although members of the genus Anopheles are not con-
sidered as primary vectors for WNV, multiple literature 
data present positive specimens from Europe; therefore, 

their vector role cannot be ruled out [16, 18–20, 40]. 
In Portugal, the role of Anopheles mosquitoes in the 
spread of the virus was described in the 1970s and the 

Fig. 2 PhyML tree of West Nile virus sequences with 1000 bootstrap replicates as the test of phylogeny. The novel sequence data of this study are 
presented in bold letters. Yellow and blue colours are used for visual clarity. They highlight the node tip labels on the phylogenetic tree that are 
closest to the sequences we have described
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ECDC also lists members of the genus as potential vec-
tors of WNV [22, 41–46]. The fact that we detected the 
virus in this species does not prove beyond doubt that 
it is a vector of the virus, but it is important to draw 
attention to the possibility and the role of the species in 
the virus circulation.

Using the complete genome sequences of BAGV and 
WNV, we performed phylogenetic analyses (Figs. 2, 3).

Our results indicate that the WNV sequence belongs 
to Lineage 1 and clusters together with sequences from 
Culex perexiguus collected in 2020 and 2021 in Spain 
and human samples collected in 2020 in Spain. This 
novel sequence belongs to the same phylogenetic clus-
ter, the WNV lineage 1, clade 1a, Mediterranean subtype. 
Among these, the WNV sequence of this study is more 
closely related to the Cx. perexiguus sequence from 2021 
[39]. Similarly to our positive sample, sequences from 
both earlier Cx. perexiguus mosquitoes and the human 
samples originate from near Coria, one of the centres of 
the 2020 human outbreak. In addition, it is important to 
note that our sequences (both WNV and BAGV) were 
found in An. atroparvus, highlighting the potential of 

other mosquito species as vectors or players in sustaining 
the endemic transmission of the virus. Also, it highlights 
the importance of expanding the target species for future 
surveillance studies beyond Culex species.

The phylogenetic position of the newly described 
BAGV sequence aligns with that of a Portuguese red-leg-
ged partridge sequence from 2021, indicating its mem-
bership in the G4 group of the Ntaya serogroup, within 
the BAGV/ITV monophyletic cluster [2, 47, 48] (Fig. 3).

Co-circulation of different Flaviviruses in the same eco-
system was reported in multiple localities across Europe, 
usually involving Usutu, West Nile, and Bagaza viruses 
[11, 49, 50].

BAGV is a zoonosis which is increasingly gaining 
attention as a potential and more significant veterinary 
pathogen in Europe with increasing frequency of detec-
tions. The 2019 outbreak of BAGV in Spain occurred 
in the area where WNV, USUV, and BAGV were con-
firmed to co-circulate in 2011. Red-legged partridges 
found dead during the outbreak had enlarged livers 
and kidneys and other poor body condition. This is a 
cause for concern, among other things because of its 

Fig. 3 Neighbour‑joining tree of Bagaza virus sequences. Neighbour‑joining phylogenetic tree was inferred, using 1000 bootstrap replicates 
in Geneious  Prime® 2023.1.1 Novel sequence data of this study are presented in bold letters. Yellow and blue colours are used for visual clarity. They 
highlight the node tip labels on the phylogenetic tree that are closest to the sequences we have described
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role in the ecosystem. In addition to animal health rel-
evance, during the Indian outbreak, anti-BAGV anti-
bodies were detected in humans, raising awareness that 
humans may also be exposed to the virus at some level 
[11, 51].

Conclusions
In the present paper, we demonstrated the feasi-
bility of our on-site surveillance line of action in 
mosquito-borne pathogen monitoring. It may be a val-
uable approach to aid rapid-response mosquito control 
actions and outbreak investigation activities or a good 
alternative for outbreak early warning systems, specifi-
cally in low-resource regions where mobile solutions 
can overcome logistic challenges. In addition to dem-
onstrating this approach, we have released new genome 
sequences for both Bagaza and West Nile viruses from 
Europe. Moreover, we have identified another potential 
mosquito vector, An. atroparvus, in the region, thereby 
reinforcing the practicality and viability of these meth-
ods. To the best of our knowledge, this is the first in situ 
surveillance study for WNV.
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