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Abstract 

Background:  Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles 
mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths 
worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infec‑
tions, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in 
protein synthesis and are potent anti-infective drug targets. The structure–function activity relationship of aaRSs in 
mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored.

Methods:  We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles 
culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database 
(https://​vecto​rbase.​org/​vecto​rbase/​app) and web-based tools were utilized to predict the subcellular localizations 
(TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, 
InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases—were generated 
using the I-TASSER and Phyre protein modeling servers.

Results:  Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), 
and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity 
amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%.

Conclusions:  Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] 
of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) 
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Each year approximately 700,000 deaths (~ 17% of total 
infectious disease deaths worldwide) are attributed to 
mosquito-borne diseases such as chikungunya, den-
gue, malaria, West Nile virus, and Zika [1–3]. Mosqui-
toes transmit diseases by harboring the disease-causing 
parasites or viruses that are transmitted to the host dur-
ing blood-feeding [3, 4]. Increased insecticide resist-
ance makes efforts to control mosquitoes challenging 
[5–7]. Worldwide there are over 3500 mosquito species 
[8]. Among the different species of mosquitoes, Aedes 
aegypti transmits viruses (e.g., dengue, yellow fever, chi-
kungunya, and Zika), whereas Anopheles spp. transmit 
the malaria-causing parasites of Plasmodium spp. [9]. 
Regarding malaria, the three primary Anopheles vec-
tors in India are (i) An. culicifacies (rural areas), which 
is responsible for the majority of malaria cases in India; 
(ii) An. stephensi (urban areas); and (iii) An. minimus 
(northeastern region of India) [10, 11]. Anopheles gam-
biae is highly effective in spreading malaria and is mainly 
localized to Africa. In addition to Plasmodium falcipa-
rum, An. gambiae hosts and transmits the filarial worm 
Wuchereria bancrofti that causes lymphatic filariasis [12]. 
With recent advancements in sequencing technologies, 
the full genomes of several mosquito species have been 
decoded and new protein targets identified. These find-
ings hold promise for the discovery and development of 
novel insecticides [13].

Aminoacyl-tRNA synthetases (aaRSs) are also known 
as tRNA ligases, and they universally drive the protein 
translation process [14, 15]. The aminoacylation reac-
tion catalyzed by aaRSs provides an opportunity for the 
development of protein translation inhibitors [16–20]. 
The main function of aaRSs is to append an amino acid 
to the respective tRNAs in an adenosine 5′-triphos-
phate (ATP)-dependent manner. First, ATP activates an 
amino acid to form an intermediate molecule known as 

“aminoacyl-adenylate.” In the next step, the intermediate 
is attached to the cognate tRNA molecule through cova-
lent bond formation and the reaction is completed with 
the release of adenosine 5′-monophosphate (AMP) [21]. 
The aaRSs are multi-domain proteins with (i) a conserved 
catalytic domain (responsible for tRNA and amino acid 
ligation events), (ii) an anticodon binding domain (ABD) 
(responsible for binding of the anticodon region of the 
tRNA), and other additional domains for (iii) RNA bind-
ing and (iv) editing activity, or (v) C-terminal zinc-bind-
ing-like domain. The editing domain is responsible for 
removing incorrectly charged tRNA. In nature, there 
are 20 amino acids, and in general, for each amino acid 
there is at least one aaRS present. These 20 aaRSs can 
be broadly classified into either class I or class II. Class 
I and class II enzyme annotation is based on two factors: 
(i) possession of conserved structural motifs and (ii) their 
mode of substrate binding. Typical characteristics of 
class I enzymes are possession of a Rossmann fold, which 
is composed of two highly conserved motifs, KMSKS and 
HIGH. Compared to the class I type, class II aaRSs con-
tain three conserved motifs in their domain and carry a 
unique fold composed of antiparallel beta strands [22]. 
The aaRSs show high sequence diversity, with structural 
differences and domain arrangements across organisms; 
however, aaRS catalytic domains are more conserved 
across species. Further, noncanonical functions of aaRSs 
include RNA splicing, transcription regulation, signal 
processing, immune responses, and apoptosis [23, 24]. 
For instance, the P. falciparum tyrosyl-tRNA synthetase 
(PfYRS) possesses cytokine-like activity [25]. The aaRSs 
are mainly located in the cytoplasm and the mitochon-
dria for protein synthesis [26]. Recently, aaRSs have also 
emerged as a potential drug target for several eukaryotic 
pathogens (Leishmania, Plasmodium, and Toxoplasma) 
via multi-site targeting [16–18, 25, 27–35].

and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against 

the studied Anopheles spp. and Ae. aegypti. 
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In the present study, computational tools were 
employed to characterize aaRSs present in the genomes 
of Anopheles (An. gambiae, An. culicifacies, An. ste-
phensi, and An. minimus) and Ae. aegypti. All the differ-
ent aaRSs present in the five studied mosquito species 
were annotated. Our analysis identified a total of 37 (An. 
gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. 
minimus), and 35 (Ae. aegypti) different aaRSs in these 
respective genomes. We also investigated individual aaRS 
sequences in detail and predicted their isoelectric point 
(pI) and potential subcellular localizations. Furthermore, 
we determined the domain arrangements of all different 
aaRS spread across five different mosquito species and 
generated structural models of several important drug-
gable targets. Overall, this study lays the groundwork for 
the development of next-generation insecticides against 
the Anopheles spp. and Ae. aegypti aaRSs.

Protein sequences of the aaRSs from the five mosqui-
toes (An. culicifacies, An. stephensi, An. minimus, An. 
gambiae, Ae. aegypti) were retrieved from the Vector-
Base database (https://​vecto​rbase.​org/​vecto​rbase). The 
VectorBase (https://​vecto​rbase.​org/​vecto​rbase) anno-
tated protein sequences were further validated by com-
paring the sequences from the NCBI (https://​www.​ncbi.​
nlm.​nih.​gov/) and UniProt (https://​www.​unipr​ot.​org/) 
databases. ProtoParam (https://​web.​expasy.​org/​protp​
aram/) was used to characterize individual aaRS iso-
electric points. VectorBase (https://​vecto​rbase.​org/​vecto​
rbase) was initially used to extract the protein sequence 
of aaRSs from An. gambiae, and this was used as a refer-
ence for genome annotation of the other mosquito spe-
cies studied here via Protein BLAST. The aaRS sequences 
from An. culicifacies, An. stephensi, An. minimus, and Ae. 
aegypti were further screened against each other in vari-
ous databases, including NCBI (https://​www.​ncbi.​nlm.​
nih.​gov/) and UniProt (https://​www.​unipr​ot.​org/), for 
further validation.

Subdomains of individual aaRSs were determined using 
the online web servers Pfam (http://​pfam.​xfam.​org/) and 
InterPro (https://​www.​ebi.​ac.​uk/​inter​pro/). The same 
databases were also used to acquire information about 
domain function. The aaRS signal sequence/peptide and 
subcellular localization were predicted using the online 
web servers TargetP-2.0 (http://​www.​cbs.​dtu.​dk/​servi​
ces/​Targe​tP/), SignalP 5.0 (http://​www.​cbs.​dtu.​dk/​servi​
ces/​Signa​lP/), and DeepLoc-1.0 (http://​www.​cbs.​dtu.​dk/​
servi​ces/​DeepL​oc/). Multiple sequence alignment (MSA) 
of the drug binding site was performed utilizing MUS-
CLE (https://​www.​ebi.​ac.​uk/​Tools/​msa/​muscle/). MSA 
for phylogenetic analysis was carried out using Clustal 
Omega (https://​www.​ebi.​ac.​uk/​Tools/​msa/​clust​alo/).

Homology modeling of lysyl (KRS)-, prolyl (PRS)-, 
and phenylalanyl-tRNA (FRS) synthetases was 

carried out using two different web-based servers: 
Phyre (http://​www.​sbg.​bio.​ic.​ac.​uk/​~phyre2/​html/​page.​
cgi?​id=​index) and I-TASSER (https://​zhang​lab.​ccmb.​
med.​umich.​edu/I-​TASSER/​server). The quality of the 
protein models was assessed using SAVES v6.0 (https://​
saves.​mbi.​ucla.​edu/). Protein structure visualization 
was done using PyMOL (https://​pymol.​org/2/) and 
Chimera (https://​www.​cgl.​ucsf.​edu/​chime​ra/​downl​oad.​
html).

Our analyses identified 37 aaRSs enzymes in all four 
Anopheles spp. (An. culicifacies, An. stephensi, An. mini-
mus, An. gambiae) and 35 in Ae. aegypti, including the 
bifunctional aaRSs—glutamyl-prolyl-tRNA synthetase 
(EPRS) (Fig.  1, Additional file  1: Table  S1) [36]. Aedes 
aegypti carries only one copy of histidyl-(HRS) and lysyl-
tRNA synthetase (KRS), whereas the four Anopheles spp. 
carry two copies each of KRS and HRS (Additional file 1: 
Table S1). All five mosquito species (four Anopheles spp. 
and Ae. aegypti) possess two copies of each aaRS, except 
for glycyl-(GRS), threonyl-(TRS), and glutaminyl-(QRS) 
tRNA synthetases, with one gene copy; and FRS, which 
has three copies, with two coding for the one FRS-alpha-
like, one for FRS-alpha, and one for the FRS-beta subunit.

The aaRSs are generally classified into two groups, class 
I and class II, based on the conserved topology of the 
synthetase core domain. We observed an equal number 
of proteins belonging to class I and II families (18 each), 
except for Ae. aegypti, where 18 class I and 16 class II type 
aaRSs were found (Fig. 1 and Additional file 1: Table S1). 
Additionally, a single protein copy of the bifunctional 
EPRS was present in all the studied mosquito species. 
The subcellular localization of the annotated aaRSs 
from the mosquito species was predicted using online 
servers. Anopheles gambiae and An. stephensi have 21 
aaRSs localized to the cytoplasm and 16 to the mito-
chondria (Fig. 1 and Additional file 1: Table S1), whereas 
in An. minimus and An. culicifacies, out of a total of 37 
aaRS enzymes, 22 are localized to the cytoplasm and 15 
to the mitochondria. In Ae. aegypti, out of 35 aaRSs, 20 
are predicted to localize to the cytoplasm and 15 to the 
mitochondria (Fig. 1). Consistent with other species such 
as Babesia spp., Plasmodium spp., and Homo sapiens, a 
larger number of aaRSs are found in the cytoplasm com-
pared to the mitochondria [34, 37]. Generally, mitochon-
drial-targeting peptide is present at the N- or C-terminus 
or at the internal site of the protein [26]. It is worth not-
ing that protein/tRNA migration to the mitochondria 
has been reported in the absence of signal peptides [38]. 
For instance, the charged tRNAs of the aaRSs are miss-
ing within the mitochondrial compartment, and they are 
imported from the cytoplasm in protozoa of the genera 
in Leishmania, Trypanosoma, Plasmodium, and Toxo-
plasma [39–43].
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Fig. 1  The distribution of aminoacyl-tRNA synthetases (aaRSs) in the studied mosquito species. aaRSs from Anopheles (An. culicifacies, An. stephensi, 
An. minimus, and An. gambiae) and Ae. aegypti were characterized based on topologies and subcellular location. a Class I and II annotation was 
performed based on the topologies of the central catalytic domain (CCD) and the mode of substrate binding. The number of aaRSs annotated for 
each studied species and their localization for class I, class II, and bifunctional aaRSs is shown, with exceptions listed in brackets. For class I aaRSs, 
An. gambiae, An. stephensii, and An. minimus carry nine cytoplasmic and nine mitochondrial aaRSs, whereas An. culicifacies and Ae. aegypti have 10 
cytoplasmic and eight mitochondrial aaRSs. b The tentative distribution of the predicted subcellular localizations (cytoplasmic and mitochondrial) 
for the studied An. culicifacies, An. stephensi, An. minimus, An. gambiae, and Ae. aegypti is shown
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Fig. 2  Pfam (http://​pfam.​xfam.​org/) and UniProt (https://​www.​unipr​ot.​org/) assigned common domain features of all catalogued aaRS enzymes 
from four different Anopheles species and Aedes spp. Detailed domain arrangement of class I and class II type aaRSs across different mosquito 
species. Protein sequences of the aaRS gene (both class I and class II) were retrieved from VectorBase (https://​vecto​rbase.​org/). For CRS, HRS, and 
KRS, cytoplasmic and mitochondrial variants are not uniformly distributed across different species analyzed here

http://pfam.xfam.org/
https://www.uniprot.org/
https://vectorbase.org/
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The aaRSs consist of multiple domains, with a core 
synthetase domain and several other auxiliary domains 
for RNA binding, editing, and oligomerization, some 
of which have been targeted for drug discovery [18]. 
Our analysis of the five mosquito species suggests the 
presence of a core catalytic domain and several addi-
tional domains for all studied aaRSs. For instance, the 
DALR [aspartate (D), alanine (A), leucine (L), arginine 
(R)] is an anticodon binding domain, which largely con-
sists of an α-helical structure and was found in arginyl 
tRNA synthetase (RRS) of all mosquito species (Fig.  2 
and Additional file  1: Table  S1). The DHHA [aspartate 
(D), histidine (H), histidine (H), alanine (A)] domain is 
unique to the cytoplasmic variant of the (alanyl tRNA 
synthatase)  ARS enzyme [44]. Furthermore, Pfam pre-
dicted the presence of the glutathione S-transferases 
(GST)-like domain in the cytoplasmic version of meth-
ionyl-tRNA synthetase (MRS). Two GST subdomains at 
the N- and C-terminus were also present within MRS 
from all the studied mosquito species (Additional file 1: 
Table  S1). GST or GST-homology domains play a cru-
cial role in aaRS complex formation with multifunctional 
factors such as p18, p38, and p43 [45, 46]. The second 
additional domain (SAD), WHEP-TRS (also known as 
helix-turn helix domain or Wh-T), TGS [TRS (threonyl-
tRNA synthetase), GTPase, and SpoT], and the HGTP 
anticodon domain were also present in several of the 
studied aaRSs (Fig.  2). For example, the Wh-T domain 
was mainly detected in bifunctional EPRS of all five 
mosquito species, and our analysis further revealed the 
presence of multiple copies of the same (Wh-T) domain 
within the EPRS structure. Other than EPRS, the Wh-T 
domain was also found in the cytoplasmic version of 
MRS in all Anopheles and Aedes mosquitoes (Additional 
file 1: Table S1). The Wh-T domain was detected in the 
GRS enzyme of all mosquitoes examined here as well. 
The same domain was also found in the cytoplasmic vari-
ant of HRS in all Anopheles and Aedes species, the only 
exception being An. culicifacies HRS. These domains are 
well known for their interaction with the GAIT (inter-
feron-gamma-activated inhibitor of translation) complex 
[47]. Additionally, these domains are involved in tRNA 
binding to the aaRS [48]. Intriguingly, one of the three 
FRS genes (cytoplasmic variants of FRS-alpha) encodes 
multiple DNA binding domains (DBD) [49] in all four 
Anopheles spp. and Ae. aegypti analyzed here (Fig.  2). 
Our analysis detected the presence of a secondary asso-
ciated domain (tRNA_SAD) in all ARS and TRS exam-
ined (Fig. 2 and Additional file 1: Table S1). This domain 
generally contains a highly conserved HxxxH motif that 
is frequently present in metal-dependent hydrolases [50]. 
In addition to the SAD domain, TRS possesses a TGS 
domain that is located at the N-terminus of the protein 

[44], and the TGS domain was found to be present in all 
mosquito species. Additionally, a comparison of class I 
and class II aaRSs clearly showed the presence of a higher 
number of subdomains in class II enzymes.

Analysis of the physicochemical properties for all aaRSs 
in this study (isoelectric point [pI]) showed that in gen-
eral, the core synthetase domain of class II aaRSs is more 
acidic in nature and carries a large number of negatively 
charged residues (on the surface) compared to the class 
I synthetase (Additional file  1: Table  S2). However, the 
length of the core synthetase domain belonging to class 
I aaRSs was found to be greater than that of the class II 
family of the aaRS enzymes (Additional file 1: Table S2).

Further analysis of the sequence identity between the 
core synthetase domain of the annotated aaRSs from 
An. culicifacies and An. gambiae in comparison with H. 
sapiens is shown in Additional file 1: Table S3. The core 
synthetase domain of the aaRSs from An. culicifacies and 
An. gambiae shared ~ 90–95% sequence identity (data not 
shown), whereas these two species shared sequence iden-
tity of ~ 39–82% with aaRSs from H. sapiens (Additional 
file  1: Table  S3). In the case of cytoplasm variants, the 
maximum sequence identity (~ 82%) was observed for 
seryl t-RNA synthatase (SRS) and the minimum sequence 
identity was found in valyl-tRNA synthetase (VRS) from 
An. culicifacies (~ 55%). Our analysis showed that mito-
chondrial aaRSs have poor sequence identity in compari-
son with their cytoplasmic counterparts when compared 
to the human homolog (Additional file  1: Table  S3). 
The moderate difference in sequence identity between 
Anopheles and human aaRSs shows promise for the 
design of insecticides selectively targeting mosquitoes.

Three of the aaRSs—lysyl (KRS), prolyl (PRS), and phe-
nylanalyl (FRS)—are advanced targets for drug discov-
ery against malaria parasites and have been structurally 
and functionally validated against either P. falciparum or 
Plasmodium vivax. The importance of structure-based 
targeting of orthologous pathogen proteins (STOPP) to 
accelerate the discovery of novel drugs via the assess-
ment of sequence conservation within the active site 
residues in aaRSs has been widely explored [28]. The 
sequence similarity between the aaRSs from the four 
Anopheles spp. and Ae. aegypti was of a moderate range 
(i.e., 40–80%). Thus, in order to explore the possibil-
ity of exploiting three of the advanced aaRS antimalarial 
drug targets KRS, PRS, and FRS in Anopheles and Ae. 
aegypti, we determined the sequence similarity between 
KRS, PRS, and FRS of different mosquito species com-
pared to P. falciparum and P. vivax. Our analysis showed 
partial sequence conservation amongst the five mos-
quito species with both P. falciparum (KRS ~ 32–55%, 
PRS ~ 19–29% range, FRS-alpha ~ 42–44% range) and 
P. vivax (KRS ~ 31–54% range, PRS ~ 19–29% range, 
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FRS-alpha ~ 40–42% range), with high active-site conser-
vation that was further explored in our analysis. Hence, 
as proof of concept, we built three-dimensional mod-
els of KRS, PRS, and FRS enzymes from one of the five 
mosquito species (i.e., An. culicifacies), as previously 
described in the methods section. Anopheles culicifa-
cies was chosen as it is the most prevalent and the pri-
mary malaria-causing vector in India [11]. Analysis of the 
active site residues of these three (pfKRS, HsKRS, and 
AcKRS) aaRSs showed poor active site residue conserva-
tion in KRS (data not shown). We subsequently analyzed 
the halofuginone active site in PRS and bicyclic azetidine 
compound active site in FRS.

Plasmodium falciparum PRS (PfPRS) has been stud-
ied as a drug target of halofuginone (HF) [32, 51, 52]. 
Sequence and structural comparison was performed 
between the PfPRS (PDB: 4YDQ), HsPRS (PDB: 4K88), 
and AcPRS (modeled three-dimensional structure) 
(Fig.  3a). The analyses revealed the HF active site to be 
partly conserved (Fig.  3b) [32]. Among the active sites, 
the bulkier residues in PfPRS and HsPRS were replaced 
with the smaller residues in AcPRS–for example, Tyr with 
Thr, Thr with Ser, Phe with Tyr (Fig.  3c). In addition to 
PfPRS, an inhibitor bound structure for the P. vivax FRS 
(PvFRS) was also analyzed (PfFRS structure is not availa-
ble). Structural analysis of the PvFRS (PDB: 7BY6), HsFRS 
(PDB: 3L4G), and the AcFRS was performed to charac-
terize the active site residues of the BRD1389 bound 
inhibitor of FRS (Fig. 4a) [35]. Our analysis revealed that 
the active site within the PvFRS, HsFRS, and the mod-
eled AcFRS is highly conserved (Fig.  4b). A comparison 
with the HsFRScyto revealed that the PvFRScyto occupies 
a ligand-induced fit model based on open conformation 
of the loop formed by the ATP binding pocket residues 
numbered 443–453 to accommodate the methoxymethyl 
group. On the other hand, closed conformation of resi-
dues is observed in the auxiliary pocket [35, 36]. Further, 
the key BRD1389 interacting residues as shown in Fig. 4c 
within the active site were highly conserved in compari-
son to the PvFRS. 

Owing to increased insecticide resistance in several 
of the mosquito species, there is an immediate need to 
develop novel strategies to control mosquito popula-
tions. The availability of the genomes from several mos-
quito species has opened new avenues for screening 
novel insecticides. In the current study, we catalogued 
aaRSs from four different Anopheles spp. (An. culicifa-
cies, An. stephensi, An. gambiae, and An. minimus) and 
Ae. aegypti. We show variation in the number of aaRSs 
present in the four Anopheline species compared to 
Ae. aegypti, as has been seen for several other species 
including Plasmodium, H. sapiens, and Babesia [36, 
37]. In general, all organisms should have 20 aaRSs for 

protein synthesis (translation) coding for each of the 
amino acids, and an additional aaRSs enzyme is attrib-
uted to organelle-specific activity [53]. However, there 
are exceptions to this observation; for example, in bac-
teria and archaea families there are indirect routes of 
Gln-tRNAGln and Asn-tRNAAsn synthesis that coexist 
in parallel with the classical synthesis pathways [54]. In 
addition, it was observed that organelle-specific tRNA 
synthetases remain missing (either partially or com-
pletely). Ideally, 20 different aaRSs are present within 
an organism/organelle, as stated earlier. However, occa-
sionally the tRNAs and aaRSs are shared among more 
than one organelle, for example, FRS [36].

Among all aaRSs analyzed here, FRS is found to be 
the most interesting, as this is the only protein found in 
our analysis that consists of two chains, one α and one 
β, and similar to other species it likely exists as a heter-
odimer in solution [35]. It is worth noting that there are 
exceptions, and mitochondrial FRS (yeast and human) 
can exist as a monomer [55]. The α and β FRS subunits 
were found in the cytoplasm of all five studied mosquito 
species. Furthermore, a second copy of α-FRS was also 
detected in the mitochondria of all examined mosquito 
genomes. Our analysis of the three aaRSs—KRS, PRS, 
and FRS—also revealed partial structural conservation of 
the respective inhibitor binding site topology within the 
enzyme across species (Figs. 3b, 4b and Additional file 1: 
Fig. S1). We propose that antiplasmodial inhibitors like 
HF (PRS) and BRD1389 (FRS) may have the potential to 
be repurposed against Anopheles spp. and Ae. aegypti.

In conclusion, our analysis provides in-depth data 
on genome-wide identification and annotation of their 
potential localization along with domain arrangements 
of aaRSs from four different Anopheles spp. and Ae. 
aegypti. The aaRSs are essential for protein synthesis, 
and their inhibition is detrimental to the organism. 
AaRSs are a gene family that is considered a high-
value drug target against parasites (especially proto-
zoan parasites). Moderate sequence identity (40–80%) 
within the core synthetase domain of aaRSs from H. 
sapiens and mosquito species in our analysis suggests 
that targeting aaRSs in mosquito species can be effec-
tively translated in designing safe (nontoxic) inhibitors 
against mosquitoes. Furthermore, the partial struc-
tural and sequence similarity between Plasmodium and 
mosquito aaRS binding sites offers a window for drug 
repurposing. Indeed, targeting any particular aaRS that 
is conserved between the mosquito (Anopheles) and the 
parasite (Plasmodium) presents a very unique opportu-
nity. This comprehensive study of aaRSs from Anoph-
eles and Aedes mosquitoes will be beneficial for new 
insecticide development and thus vector control via 
targeting aaRSs as potent insecticidal targets.
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Fig. 3  Halofuginone binding site in prolyl-tRNA synthetase from An. culicifacies in comparison with P. falciparum and H. sapiens.  a Catalytic (C 
domain), anticodon binding and the C-terminal zinc-binding-like (Z domain) domains are marked on the three-dimensional crystal structure of 
holo-prolyl-tRNA synthetase from HsPRS (PDB: 4K88) (blue), PfPRS (PDB: 4YDQ3) (yellow), and AcPRS (built structure model, this study) (purple) 
are shown. Halofuginone (HF) is shown in red and phosphoamniophosphonic acid-adenylate ester (ANP) in green. The chemical structure of HF 
(halofuginone) is also shown (marked in red) in the same figure. b Structural superposition of the three-dimensional crystal structure with the key 
HF interacting residues is shown for P. falciparum, H. sapiens, and An. culicifacies. c Multiple sequence alignment of the HF binding site residues (red 
box) and the important secondary shell residues as determined from the known three-dimensional crystal structures across species is shown. Pf: P. 
falciparum; Cp: Cryptosporidium parvum; Tg: Toxoplasma gondii; Hs: H. sapiens; Ac: An. culicifacies; As; An. stephensi; Am: An. minimus; Ag: An. gambiae; 
Ae: Ae. aegypti 
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Fig. 4  The structural analysis of the binding site in the phenylanalyl-tRNA synthetase from An. culicifacies in comparison with P. vivax and H. sapiens. 
a The three-dimensional crystal structure of the superimposed phenylanalyl-tRNA synthetase from An. culicifacies (built structure model, this study), 
P. vivax (PDB ID: 7BYG), and H. sapiens (PDB ID: 3L4G) are shown with bound inhibitor BRD1389 (in red). In the same figure chemical structure of the 
inhibitor BRD1389 is also depicted. b The key residues within 4 Å range of the BRD1389 binding cavity are shown for Pv (yellow), Hs (blue), and Ac 
(purple). c Multiple sequence alignment of the BRD1389 interacting residues is shown, with the key residues marked in red box. The IC50 value for 
the Pf-, Pv- and Hs-FRS are shown in µM range [35]. Pv: P. vivax; Hs: H. sapiens; Ac: An. culicifacies; As; An. stephensi; Am: An. minimus; Ag: An. gambiae; 
Ae: Ae. aegypti 
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