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Elevated Plasmodium infection rates and
high pyrethroid resistance in major malaria
vectors in a forested area of Cameroon
highlight challenges of malaria control
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Abstract

Background: High coverage of long-lasting insecticidal nets (LLINs) is the cornerstone of the malaria control strategy
of the national malaria control program (NMCP) in Cameroon, with a target of reducing malaria transmission to less
than 10% by 2035. To this end, more than 20 million LLINs have been distributed to populations countrywide since
2011. The present study evaluated entomological indices and Anopheles susceptibility to pyrethroids in a rural forested
area of south Cameroon with high coverage of LLINs.

Methods: The study was conducted between July 2014 and May 2016 in Obout, a village located in a rural forested
area in south Cameroon. Resting mosquitoes were collected using electric aspirators and were identified to species
using morphological criteria and PCR tools. Mosquito feeding preferences and infection status to Plasmodium
falciparum were determined by ELISA and using TaqMan assays. The susceptibility of wild F1 adults to pyrethroids was
monitored using WHO insecticide susceptibility bioassays.

Results: During the study period, 5,993 Anopheles mosquitoes were collected indoors both in rooms with and without
nets. Two main vector species, namely An. funestus and An. gambiae, were identified in the locality, with An. funestus
being by far the most abundant (89.68%). ELISA analysis revealed high percentage of blood meal taken exclusively on
human (97.65–98.95%) supporting the high antropohilic behaviour of both species. Plasmodium falciparum infection
rate detected by ELISA was high throughout the study period and varied between 3.28–14.04% (mean: 10.40%) in An.
funestus, and between 5.55–22.22% (mean: 13.87%) in An. gambiae. This trend was confirmed by TaqMan assays,
with P. falciparum infection prevalence of 23.33% in An. funestus. Significant decrease of mortality associated with
high frequency of kdr mutation was observed in An. gambiae (deltamethrin: 36.6–56.45%; permethrin: 6–18.65%)
indicating high level of resistance to pyrethroids. For An. funestus, resistance was marked for deltamethrin
(mortality: 70.54–76.24%) than for permethrin (94.12–94.74%).

Conclusions: Our study showed that despite LLINs, the population of Obout remains exposed to bites of highly
infected An. funestus and An. gambiae mosquitoes, highlighting the challenges to controlling malaria in forested
areas, especially in the presence of insecticide resistance.
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Background
The World Health Organization set the ambitious new
target of reducing the global malaria burden by 90% by
2030 [1]. Vector control is the cornerstone of that strategy
through the mass distribution of free long-lasting insecti-
cidal nets (LLINs) [2, 3]. In Cameroon, the first national
campaign of massive distribution of free LLINs was con-
ducted in 2011 and increased the proportion of house-
holds possessing at least one LLIN from 33% to 66%.
However, the universal coverage, defined as one LLIN to
two people at risk of malaria [4], was achieved only at
32%. Therefore, a second campaign was launched in 2015
with the aim to reach the 80% universal coverage targeted
by the national malaria control program (NMCP) in the
strategic plan 2011–2015 [5].
The universal coverage of LLINs has proved to be effi-

cient in controlling malaria transmission in several sub-
Saharan settings [3, 6]. However, unexpected changes have
been observed in Anopheles vector populations in some
places following mass distribution campaigns of LLINs. For
example, in An. funestus changes in biting behaviour were
observed following massive introduction of LLINs in Benin
and Senegal. This vector adopted early diurnal feeding and
exophagic behaviour with the proportion of mosquitoes bit-
ing outdoor increasing to 26% [7, 8]. Moreover, a change in
species composition in the An. gambiae complex after the
implementation of LLINs was noticed in Dielmo (Senegal)
[9]. In An. gambiae populations from the same area, Trape
et al. [10] reported an increase in pyrethroid resistance
characterized by rise of the frequency of Leu1014Phe kdr
resistance mutation from 8% in 2007 to 48% in 2010, after
introduction of LLINs. Such changes could negatively im-
pact malaria control operations by allowing mosquitoes to
avoid contact or become resistant to insecticides.
As part of malaria control monitoring operations, it is

necessary to regularly assess entomologic indices as well
as level and mechanisms of insecticide resistance in vector
populations in order to evaluate the effectiveness of con-
trol strategies implemented. Among the common indices
recorded in vector populations are the species compos-
ition and abundance, entomological inoculation rate,
blood-feeding preferences (antropophily/zoophily), biting
(exophagy/endophagy) or resting (endophily/exophily) be-
haviour and Plasmodium infection rate [11, 12]. The
present study aims to determine Anopheles species
composition and abundance, anthropophily, Plasmodium
infection rate and susceptibility profile to pyrethroids in a
rural forested area of South Cameroon 3–5 years after
mass distribution of LLINs.

Methods
Study site and period
The study started in July 2014, 3 years after the first na-
tional campaign of distribution of free LLINs, and ended

in May 2016, two months after the end of the second
campaign. It was conducted in Obout (3°7'N, 11°65'N), a
village located in a rural forested area close to the city of
Mfou, situated about 25 km from Yaoundé, the capital
city of Cameroon. The vegetation around the village is
constituted by an equatorial forest which is degraded by
farming activities. The climate is of equatorial guinean
type, characterized by two rainy seasons (August-
October and April-June) and two dry seasons (November-
April and June-July). The annual average rainfall is
2000 mm while average annual temperatures range be-
tween 19–29 °C, and the average humidity varies be-
tween 66–80% [13].
Obout is populated by about 200 inhabitants, most of

whom are farmers. They live in houses made of mud or
cement with tin rooves, presenting many interstices be-
tween the roof and the walls through which mosquitoes
can enter or leave the houses. The village is also charac-
terized by the presence of several fish ponds bordered
with vegetation which could favour the development of
immatures of Anopheles mosquito species, particularly
those of An. funestus group. The area is known to be hy-
perendemic for malaria [13, 14] and the main prevention
method is LLINs, with coverage of around 70% in the
population.

Mosquito collection and morphological identification
Resting mosquitoes were collected in human dwellings
in the morning using electric aspirators (Rule In-Line
Blowers, Model 240) and were brought back to the in-
sectary. After species identification using morphological
keys [15, 16], non-fed and some of the freshly blood
engorged females were directly preserved in tubes con-
taining desiccant for ELISA analysis to detect the presence
of circumsporozoite protein (CSP) of P. falciparum in the
head and thorax [17, 18], and to identify blood meal
source [19]. The other blood-fed female mosquitoes were
kept in paper cups for four days until eggs became mature.
Gravid mosquitoes were allowed to oviposit according to
the forced egg-laying [20], and eggs were reared to adult
F1 used for insecticide bioassays, as described previously
[21]. All the females were later killed and stored in tubes
containing desiccant for future analysis.

Laboratory processing of mosquitoes
Dead mosquitoes stored in Eppendorf tubes containing
desiccant were divided in several parts. Wings or legs
were used for genomic DNA extraction as described pre-
viously [22] and morphological identification was con-
firmed using PCR based assays [23, 24]. The head and
thorax were used for ELISA to detect P. falciparum CSP
[17, 18] while abdomen containing blood was used for
ELISA to identify the source of blood meal [25]. Diluted
P. falciparum sporozoite proteins supplied by the Center
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for Disease Control (CDC, Atlanta, USA) were used as
positive controls, while ground male mosquitoes were used
as negative controls. For both ELISA analyses, optical dens-
ities (OD) were read at 405 nm on an ELISA plate reader
(Biotek ELx800, Swindon, UK). Positive samples were de-
termined by OD readings 2-fold greater than the negative
controls [17] and were tested a second time for validation.
Pattern of malaria transmission detected by ELISA was

validated using TaqMan assay [26]. PCRs were done using
the mosquito’s whole body DNA extracts and the presence
of P. falciparum (F+) and/or P. ovale, P. vivax and P.
malariae (OVM+) was detected in 30 field-collected An.
funestus females. These females were randomly chosen
and were different from those used for ELISA.

Susceptibility assays to insecticides
The susceptibility of wild F1 An. funestus and An. gambiae
populations to discriminating concentrations of deltameth-
rin and permethrin was monitored using WHO insecticide
susceptibility test-kits and standard procedures [27]. Im-
pregnated papers were obtained from a WHO reference
center (Vector Control Research Unit, University Sains
Malaysia, Penang, Malaysia) and their quality was first
checked on the susceptible Kisumu strain of An. gambiae.
All tests were done at a temperature of 25–27 °C and 80 ±
10% relative humidity. For each test, four batches of 20–25
unfed F1 females, 2–5 day-old, were exposed to papers
impregnated with an insecticide for 1 h. Meanwhile,
one batch of 20–25 mosquitoes exposed to untreated
paper was used as a control. Percentage of knockdown
(KD) mosquitoes was recorded at 60 min, after which
mosquitoes were held for 24 h at 27 ± 2 °C and 80 ± 10%
relative humidity. The kdt50 and kdt95 which correspond
to the time required for knocking 50% and 95% of mos-
quitoes tested, were estimated using a log-time probit
mode [28]. Mortalities were recorded 24 h after exposure
and were compared between the two years for each spe-
cies and insecticide using Fisher's exact test run in Graph
Pad prims V.5. P-values of < 0.05 were considered as

significant. Resistance/susceptible status was evaluated
based on WHO criteria [27]. According to these criteria,
mortality rates less than 90% were indicative of resistance
while those greater than 98% were indicative of suscepti-
bility. Mortality rates between 90–98% suggested the pos-
sibility of resistance that needs to be confirmed. Finally,
50 F0 wild An. gambiae mosquitoes were used for the de-
tection of the L1014F and L1014S mutations by Taqman-
kdr assay [29].

Results
Mosquito species composition
A total of 5993 resting Anopheles mosquitoes were col-
lected during the study period (Table 1). Repartition of
mosquitoes according to the presence/absence or the
quality of bednet showed that 71.12% were caught in
rooms without mosquito net, 26.37% in rooms with old
or perforated nets, while very few (2.51%) were collected
in rooms with new nets (no more than one year old).
Two species groups/complexes, namely An. gambiae (s.l.)
and An. funestus (s.l.), were identified according to mor-
phological criteria, but the later was by far the most abun-
dant representing 89.68% of the total mosquitoes caught.
Molecular identification showed that An. funestus (s.s.)
(hereafter An. funestus) and An. leesoni where the two
species of the funestus group present in Obout, with An.
funestus (s.s.) (98.16%, n = 213) being the most abundant.
In the same manner, An. gambiae (93.96%, n = 109) was
much more abundant compared to An. coluzzii (3.45%,
n = 4); only three hybrids (2.59%) between both species
were identified.

Blood meal source and Plasmodium circumsporozoite
protein rate
Overall, 95.56% of mosquitoes were blood-fed, semi gravid
or gravid at the time they were collected indicating that
people living in surveyed houses were highly exposed to
mosquito bites. ELISA analysis confirmed that An. funes-
tus and An. gambiae were highly anthropophilic, with

Table 1 Number of An. funestus and An. gambiae mosquitoes collected in Obout (Cameroon), number tested by ELISA and
corresponding circumsporozoite protein rates

2014 2015 2016

July Oct. All Feb. Feb. Mar. May All

An. funestus Collected 152 95 247 211 522 349 281 1152

Tested 152 95 247 211 522 349 281 1152

Positive 5 5 10 19 71 49 19 139

ICSP (%) 3.29 5.26 4.04 9 13.6 14.04 6.76 12.07

An. gambiae Collected 36 9 45 174 160 85 84 329

Tested 36 9 45 174 160 85 84 329

Positive 2 2 4 17 28 13 14 55

ICSP (%) 5.56 22.22 8.89 9.77 17.5 15.29 16.67 16.72
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97.65% (n = 83/85) and 98.95% (n = 94/95) blood meal ex-
clusively taken on human, respectively, while less than 3%
of tested samples consisted of mixed blood meals taken
simultaneously on human and sheep.
Of the 2,170 head and thorax analyzed by ELISA, 245

were positive, corresponding to a high global circum-
sporozoite rate of 11.29%. During the study period, this
rate varied between 3.28–14.04% (mean: 10.4%) in An.
funestus, and between 5.55–22.22% (mean: 13.87%) in
An. gambiae (Table 1). For both species, the lowest in-
fection rates were obtained in 2014, while the highest
were obtained in 2016 in mosquitoes collected after the
second campaign of distribution of free LLINs.
Using TaqMan assays, 8 mosquitoes of 30 tested were

found to be infected by Plasmodium. Among these, 7 were
infected with only P. falciparum [F+; 23.33% (7/30)] and 1
was infected with P. ovale, P. vivax and/or P. malariae
[OVM+; 3.33% (1/30)].

Insecticide susceptibility
A total of 1,336 An. funestus, 822 An. gambiae and 546
females from the An. gambiae Kisumu strain were used
in WHO susceptibility tests using two pyrethroids
(permethrin and deltamethrin) (Table 2).
The An. gambiae Kisumu strain displayed fully suscep-

tible phenotype for all insecticides tested with KDT50

less than 30 min and 100% mortality, indicating that the
impregnated papers were of good quality. By contrast,
high level of resistance to permethrin and deltamethrin,
characterized by significant decrease of mortality coupled
with increase in knockdown time, was observed in An.
gambiae. This resistance significantly increased one year
to another [(Fisher's exact test for permethrin: P < 0.0001;
OR: 9.141; CI: 4.68–17.86 ); Fisher's exact test for

deltamethrin: P < 0.0001; OR: 5.124; CI: 3.82–8.00)] with
mortality of 6% and 18.65% to permethrin and deltameth-
rin, respectively, in 2016 compared to 36.6% and 56.45%,
respectively, in 2015. (Table 2, Fig. 1). Using TaqMan-kdr
assay, both L1014F and L1014S kdr mutations were iden-
tified in An. gambiae population from Obout. However,
the frequency of the L1014F (98.72%) mutation was very
high compared to that of the L1014S (7.95%) mutation.
In An. funestus, the level of resistance to deltamethrin

was moderate, but also increased one year to another,
with mortality rates of 76.24% and 70.54% in 2015 and
2016, respectively, but the difference was not significant
[(Fisher’s exact test: P = 0.283; OR: 1.342; CI: 0.82–
2.19)]. For permethrin, low mortality rates (94.12–
94.74%), suggesting probable resistance were recorded
throughout the study period. Contrary to An. gambiae,
the resistance to pyrethroid in An. funestus was not as-
sociated with elevation of KDT50, suggesting that kdr is
probably not involved in the resistance to pyrethroids
in this species (Table 2, Fig. 1).

Discussion
The present study highlights important malaria trans-
mission due to An. funestus and An. gambiae in a rural
forested area of South Cameroon. Both species were
present in the village throughout the year and were highly
infected by P. falciparum, with infection rates reaching
22%. However, the densities of An. funestus populations
were significantly higher over the study period, making this
species the major malaria vector in this locality, where it
probably breeds in artificial fish ponds situated around the
village.
Anopheles infection status was mainly determined by

detecting the presence of P. falciparum circumsporozoite

Table 2 Mortality and knockdown time of An. funestus and An. gambiae from Obout (Cameroon) after 1 h exposure to pyrethroids

Year Species/strain Insecticide n kdt50 (min) (IC95) kdt95 (min) (IC95) Mortality (%) Status

2015 Kisumu Perm. 0.75% 120 21.2 (16.1–25) 40 (33.88–55.5) 100 S

Delta. 0.05% 100 18.1 (17.6–18.9) 24.9 (23.4–27.4) 100 S

An. funestus Perm. 0.75% 152 17.2 (16.8–17.7) 22.4 (21.4–23.8) 94.74a PR

Delta. 0.05% 101 26.6 (18.2–39.9) 55.2 (37.7–214.7) 76.24b R

An. gambiae Perm. 0.75% 153 > 60 >> 60 36.6c R

Delta. 0.05% 124 38.3 (35–41) >> 60 56.45e R

2016 Kisumu Perm. 0.75% 167 21.12 (16.1–24.6) 40.3 (33.88–55.5) 100 S

Delta. 0.05% 159 18 (17.6–18.9) 24.9 (23.4–27.4) 100 S

An. funestus Perm. 0.75% 510 29.41 (22.52–38.4) 41.61 (32.15–52.86) 94.12a PR

Delta. 0.05% 573 39.62 (20.6–54.19) 55.19 (44.89–90.19) 70.54b R

An. gambiae Perm. 0.75% 202 > 60 >> 60 6.00d R

Delta. 0.05% 343 > 60 >> 60 18.65f R
a-f For An. funestus and An. gambiae mortality rates for the same insecticide followed by different letters were significantly different between the two years
(Fisher's exact test). All significant differences were at P < 0.0001.
Abbreviations: kdt, Knockdown time; R, resistant; S, susceptible; PR, probably resistant; Perm., permethrin; Delta., deltamethrin.
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protein in the head and thorax of mosquitoes by ELISA.
Although this technique could overestimate Plasmodium
sporozoite prevalence by a factor of 1.1–1.9 in mosquitoes
[30], the fact that TaqMan assays also detected high P. fal-
ciparum infection prevalence in An. funestus (2-fold than
ELISA) reinforces the view that level of malaria transmis-
sion in the surveyed locality remains high, despite high
coverage of LLINs.
LLIN represents the tool of choice for malaria control.

It has significantly contributed to substantial reduction
of malaria transmission in sub-Saharan African countries
since its vulgarisation in 2000 [3, 6]. LLIN plays a double
role by protecting humans from mosquito bites and by
killing mosquitoes which come in contact with the net.
In this study, new mosquito nets received during the
2015–2016 national campaign of distribution of free
LLINs were effective at preventing mosquito bites, since
very few and non-fed mosquitoes were collected in rooms
with new nets. In contrast, the fact that a non-negligible
proportion (26.37%) of blood-fed mosquitoes were col-
lected in rooms with old LLINs received during the first
national campaign of distribution of free LLINs in 2011
indicated that they could have lost their efficacy, probably
due to several inappropriate washing or net deterioration.
This highlights the need to replace LLINs that are torn
or show waning efficacy to sustain high level coverage,
in order to effectively reduce malaria transmission in
sub-Saharan Africa [4, 30]. Regarding this, the WHO
recommends that malaria endemic countries should sup-
ply LLINs through a combination of mass free distribution
campaigns, normally at interval of no more than three
years, and continuous distributions particularly during im-
munisation and antenatal services [31].
In addition, the high level of resistance to pyrethroids

observed in malaria vectors in this study could have also
contributed to the loss of net efficacy by allowing resist-
ant mosquitoes to enter the nets or to bite through

holes. Although our results showed that the kdr L1014F
mutation, and to lesser extend the L1014S mutation,
were involved in the resistance observed in An. gambiae,
it could not be biased to assume kdr allele alone conferred
the ability to survive diagnostic doses of pyrethroids.
Thus, metabolic mechanisms [32, 33] must also contribute
to the high-level of pyrethroid resistance in this species.
This would also be the case for An. funestus, which exhib-
ited moderate and probable resistance to delthamethrine
and permethrin, respectively, owing to the fact that kdr
was never reported in this species. Similar to this study,
difference in levels of insecticide resistance between sym-
patric populations of the two vector species was already
reported elsewhere [34] and could be explained by differ-
ence in their biological characteristics. Anopeheles gam-
biae breeds in temporary stagnant waters, which are more
polluted by agricultural pesticides, but less for An. funes-
tus for which larvae develop in large semi-permanent
water. Another main difference among the species could
come from the fact that An. funestus probably recently
colonized the surveyed locality, as fish ponds were less
than three years old, and thus has not yet receive
enough insecticide pressure selection. Further investi-
gations are necessary to fully elucidate key insecticide
resistance mechanisms for An. gambiae and An. funes-
tus in our study area. Nevertheless, such a high level of
resistance to the two pyrethroids used for net impreg-
nation for major malaria vectors is a concern for the
continued effectiveness of this key malaria control tool,
and this call for an urgent development of new insecti-
cide compounds with different mode of action [35].
Beside issues of insecticide resistance, partial coverage

LLINs could also seriously limit the efficacy of malaria
control operations in highly endemic settings such as
forested areas of Cameroon. In fact, non-covered areas
or houses without nets could represent hot spots of
malaria transmission while people living in these places

Fig. 1 Trends of mortality to permethrin and deltamethrin in An. funestus and An. gambiae mosquitoes from Obout (Cameroon) in 2015 and 2016
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could serve as reservoir of Plasmodium parasites [36].
This hypothesis could also explain why a drop in malaria
transmission (Anopheles infection) was not observed in
the present study, even after the second campaign of dis-
tribution of LLINs. Our analysis therefore points out the
necessity to increase LLINs coverage across Cameroon.
and other control measures should be combined to LLINs
in order to achieve the goal of reducing malaria cases to
less than 10% by 2030. These include indoor residual
spraying (IRS), symptomatic diagnosis and treatment of
malaria cases using artemisinin-based combination
therapy (ACT) especially for children under 5 years,
and prevention and control of malaria during pregnancy
by administration of intermittent preventive treatment
(IPTp) using Sulfadoxine-Pyrimethamine (SP). Moreover,
since fish ponds represented major larval breeding sites in
our studied area, perhaps combining larval control with
LLINs should be considered.

Conclusions
The results of this study showed that the population of
Obout sleeping in rooms without net or rooms with only
old nets were highly exposed to bites of highly infected
and pyrethroid resistant An. funestus and An. gambiae
mosquitoes. In the context where malaria elimination is
back again on the agenda of WHO and various stake-
holders, the present study highlights the importance of
achieving universal coverage of LLINs, the need to replace
used LLINs two to three years after their distribution, and
the necessity to implement additional malaria control
measures in our study site. Meanwhile, more attention
must be paid on the evolution of insecticide resistance
in Anopheles vector species, which could seriously im-
pede malaria control operations based on the use of in-
secticide or insecticide-treated tools including LLINs.
Further studies are also necessary in order to investi-
gate all factors which could explain such high level of
malaria transmission despite large coverage of LLINs,
by assessing human behaviour and use of LLINs, resting
and biting behaviour of malaria vectors in the locality as
well as mechanisms involved in insecticide resistance.
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