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Abstract

Background: Parasitic nematodes threaten the health of humans and livestock and cause a major financial and
socioeconomic burden to modern society. Given the widespread distribution of diseases caused by parasitic
nematodes there is an urgent need to develop tools that will elucidate the genetic complexity of host-parasite
interactions. Heterorhabditis bacteriophora is a parasitic nematode that allows simultaneous monitoring of nematode
infection processes and host immune function, and offers potential as a tractable model for parasitic nematode
infections. However, molecular tools to investigate these processes are required prior to its widespread acceptance
as a robust model organism. In this paper we describe microinjection in adult H. bacteriophora as a suitable means
of dsRNA delivery to knockdown gene transcripts.

Methods: RNA interference was used to knockdown four genes by injecting dsRNA directly into the gonad of adult
hermaphrodite nematodes. RNAi phenotypes were scored in the F1 progeny on the fifth day post-injection, and
knockdown of gene-specific transcripts was quantified with real-time quantitative RT-PCR (qRT-PCR).

Results: RNAi injection in adult hermaphrodites significantly decreased the level of target transcripts to varying
degrees when compared with controls. The genes targeted by RNAi via injection included cct-2, nol-5, dpy-7, and
dpy-13. In each case, RNAi knockdown was confirmed phenotypically by examining the progeny of injected
animals, and also confirmed at the transcriptional level by real-time qRT-PCR.

Conclusions: Here we describe for the first time the successful use of microinjection to knockdown gene
transcripts in H. bacteriophora. This technique can be used widely to study the molecular basis of parasitism.
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Background
Diseases caused by parasitic nematodes are a major con-
cern, resulting in human health and socioeconomic con-
sequences [1, 2]. It is estimated that more than half of
the human population is infected with gastrointestinal
nematodes alone [3, 4], and around 20 species routinely
cause disease [5]. Parasitic nematodes are also a concern

to the livestock industry, as they cause diseases and fi-
nancial loss estimated in the tens of millions of dollars
per year [6–8]. Parasitic nematode control in humans
and livestock is limited to periodic treatment with an-
thelmintics, but development of resistance to the com-
monly used drugs is an ongoing problem, limiting
efficacy and requiring continual development of new an-
thelmintics [9, 10]. The search for new drugs, as well as
alternate novel control methods such as vaccines, re-
quires comprehensive knowledge of the host-parasite
interaction.
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An important interaction between the parasite and its
potential host is the active avoidance of the host im-
mune system by the parasite [11]. Understanding this
interaction at the molecular level provides useful insight
into pathogen virulence and host immunity [12, 13]. Ad-
vances in understanding these mechanisms require
powerful molecular tools to investigate gene function,
which are unavailable for most parasitic nematodes. Dis-
covery of RNA interference (RNAi) in Caenorhabditis
elegans was a major step forward in the analysis of gene
function [14]. RNAi is the RNA-induced silencing of
gene-specific mRNA targets [15]. In C. elegans RNAi is
performed either by soaking in double-stranded RNA
(dsRNA), feeding the nematodes with bacteria express-
ing dsRNA or by injecting the dsRNA into the gonad of
mature adult hermaphrodite nematodes [16]. In C. ele-
gans, RNAi has been successfully used to knockdown al-
most all the genes in the genome [17]. Several studies
have adapted this technique to parasitic nematodes in
attempts to knockdown genes in order to understand
host-pathogen interactions [18, 19]. RNAi based gene
knockdown has been tested, with mixed success, in both
plant and animal parasitic nematodes. Animal parasitic
nematodes in which RNAi has been tested include Nip-
postrongylus brasiliensis [20, 21], Brugia malayi [22, 23],
Onchocerca volvulus [24], Litomosoides sigmodontis [25],
Ascaris suum [26, 27], Trichostrongylus colubriformis
[28], Haemonchus contortus [29–31], Ostertagia ostertagi
[32], Teladorsagia circumcincta [33], Trichinella spiralis
[34], Heligmosomoides polygyrus [35] and Heterorhabdi-
tis bacteriophora [36, 37].
RNAi experiments conducted in parasitic nematodes

have been performed by soaking or feeding the dsRNA.
However, significant variability in both detecting the de-
sired phenotype and reduction in target gene transcripts
is common [38, 39]. RNAi in Heligmosomoides polygyrus
has failed to produce any observable knockdown [35].
Considerable variation was observed between genes
knocked down in Haemonchus contortus; in one study,
gene knockdown occurred only in genes that are
expressed in tissues that come in direct contact with
dsRNA, such as the intestine [40]. Another study found
that only administration of dsRNA by feeding resulted in
expected phenotypes [31]. Nearly complete knockdown
of several target genes has also been reported in H. bac-
teriophora when dsRNA is administered by soaking [36].
This disparity in observed phenotypes cannot be ex-
plained solely by differences in the RNAi machinery
existing in parasitic nematode species. Analysis of the
RNAi machinery has revealed that most parasites con-
tain at least the minimal requirements for a functional
RNAi pathway. Noticeably absent are the genes involved
in amplification, uptake and spread of dsRNA, including
SID-2, RSD-2 and RSD-6 [41]. This variation in RNAi

efficacy has hampered investigations of parasitic gene
function. Hence, there is a need to increase the efficacy
and reliability of gene knockdown by RNAi.
Heterorhabditis bacteriophora is an entomopathogenic

nematode, a member of the family Heterorhabditidae in
which all nematodes are obligate parasites [42]. It is
grouped in the Eurhabditis clade that includes the
hookworms Ancylostoma ceylanicum, A. duodenale and
Necator americanus that infect humans and other
vertebrates. The Eurhabditis clade also includes the
well-studied model nematode C. elegans [43]. The di-
vergence time between H. bacteriophora and C. elegans
is estimated to be between 86 and 331 MYA [44]. H.
bacteriophora has several important similarities with C.
elegans. These include small size, transparency, ease of
in vitro culture, short generation time, both hermaph-
roditic and gonochoristic reproduction, and an anno-
tated genome with about the same number of genes
[44]. Moreover, the infective stage of H. bacteriophora
and strongylid nematodes is an obligate arrested third
larval stage (L3) that is similar to the facultative
arrested dauer stage of C. elegans. These similarities, as
well as its close phylogenetic relationship with C. ele-
gans and other important parasites of humans and ani-
mals, make H. bacteriophora a potentially excellent
model for molecular studies of nematode infection
mechanisms. The only free living stage of H. bacterio-
phora is a non-feeding, developmentally arrested infect-
ive juvenile (IJ) stage. The other stages (i.e. L1, L2, L3,
L4 and adult) develop inside the host. The developmen-
tally arrested IJs can survive for months in the soil
while seeking a host. After entry into the insect host,
IJs regurgitate their endosymbiotic bacterium Photo-
rhabdus luminescens into the insect haemocoel, where
it replicates and contributes to the inevitable death of
the host within 24–72 h [42, 45]. IJs resume their devel-
opment in the host, developing only into phenotypically
female hermaphrodites. Males, females and hermaphro-
dites are produced in approximately equal numbers in
subsequent generations in the presence of abundant food
[46]. The nematodes reproduce for another 2–3 genera-
tions feeding on the insect cadaver. However, nutrient
limitation and accumulation of density limiting phero-
mones [47] impedes further progression of the life-cycle
and causes mass production of IJs. IJs colonized with P.
luminescens then exit the cadaver in large numbers into
the external environment. These IJs search for and infect
other insect hosts to continue the cycle [48].
Two previous studies in H. bacteriophora have demon-

strated that delivery of dsRNA by soaking can success-
fully knockdown gene transcripts [36, 37]. However,
dsRNA delivery either by feeding or by microinjection in
H. bacteriophora has not been reported. Very few studies
have successfully demonstrated the use of microinjection
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as a method of introducing dsRNA in parasitic nema-
todes [26, 49], yet RNAi via microinjection represents
the most reliable and least variable method of gene si-
lencing in C. elegans for most targets [16]. In the present
study we describe RNAi in H. bacteriophora by injecting
dsRNA into the gonads of the adult hermaphrodite. We
show that gene function can be successfully knocked
down in the progeny of injected nematodes by this tech-
nique. RNAi by microinjection provides an alternative
approach that can be widely used to study the function
of genes involved in parasitism of H. bacteriophora.

Methods
Nematodes
H. bacteriophora strain TT01 was kindly provided by
Dr. David Clarke (University College Cork, Ireland).
Nematode stocks were maintained in the lab by infecting
the Greater Wax Moth larvae (Galleria mellonella) with
IJs [50]. IJs emerging from white traps [51] were

propagated on lawns of P. luminescens [36] to raise
young hermaphrodites for injection.

Primer design
Primers for dsRNA were designed to target ~500 base
pair exonic regions of H. bacteriophora DNA. In order
to identify possible exons, protein BLASTs were per-
formed to identify regions of similarity between H. bac-
teriophora and C. elegans for dpy-7 and dpy-13 genes.
Primers for regions of interest were determined using
Primer3 [52], selecting for an optimum product length
of 500 base pairs, Tm of 60 °C, and primer length of 22
nucleotides. The primer pair for Green Fluorescent
Protein (GFP) was designed using the same settings in
Primer3. T7 sites (TAATACGACTCACTATAGGG)
were added to the 5′ ends of each primer to allow for in
vitro transcription.

dsRNA synthesis
Genomic DNA was isolated from frozen pellets of ~50,000
H. bacteriophora infective juveniles. An IJ pellet was re-
suspended in 50 μl of lysis buffer (50 mMKCl, 0.05 %
(w/v) gelatin, 10mMTris-HCl pH 8.2, 0.45 % Tween
20, 60 μg/ml Proteinase K, 2.5 mM MgCl2) and placed
at −80 °C for 30 min. The solution was then warmed
to room temperature and incubated at 60 °C for 2 h,
with vortexing every 15 min. Proteinase K was dena-
tured by incubating the homogenized tissue for 15 min
at 95 °C. The sample was then cooled to 4 °C and

Table 1 Primer sequences used for qRT-PCR

Primer name Sequence

dpy-13Fwd AGCCCGGAGCTAAAGGTAAC

dpy-13Rev TACGAGTCATCAATGGCACA

dpy-7-Fwd GGTAGACCAGGTCGTCCAGT

dpy-7-Rev ACCAGGCAAACCAGGACTT

rpl-32-Fwd ATCGGATAGATACCACCGCC

rpl-32-Rev TTGTGGGCATAGCACGC
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dsRNA injected - gfp cct-2 cct-2 cct-2

Target gene-qPCR cct-2 cct-2 cct-2 cct-2 nol-5

Phenotype WT WT WT cct-2 cct-2

ba

Fig. 1 RNAi mediated phenotype and transcript changes in H. bacteriophora injected with cct-2 dsRNA. Adult H. bacteriophora hermaphrodites
that were injected with cct-2 dsRNA produced progeny with no germline and empty gonad. a. Progeny of non-injected H. bacteriophora. The area
with white dotted lines indicates the position of the gonads. b. Progeny of H. bacteriophora injected with cct-2 dsRNA. c. Expression of cct-2 gene
in the progeny of injected worms. The y-axis represents the fold change in mRNA expression in the progeny of H. bacteriophora hermaphrodites.
The mRNA levels are normalized to cct-2 expression in the progeny of non-injected hermaphrodites (black bar). The green bar represents cct-2
levels in progeny of gfp injected worms. The red bar represents cct-2 levels in a phenotypically wild type sibling, and the blue bar represents the
cct-2 levels in worms with empty gonads. To control for off-target effects, expression of an unrelated gene (nol-5) in worms with empty gonads
was determined (brown bar). The graph was obtained by combining data from at least three independent biological replicates. Error bars indicate
the standard error of the mean. Asterisks depict the statistical significance of the observed differences in unpaired, two-tailed t-tests with
P-values < 0.001 (**)
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centrifuged at 3,400 × g for 1 min. The resulting super-
natant was used as template for subsequent PCR. A
50 μl PCR reaction was carried out using ChoiceTaq
Mastermix (Denville Scientific, South Plainfield, NJ,
USA) with 200 ng of template DNA, 0.2 μM of each
primer, and the manufacturer’s suggested cycling con-
ditions. PCR reactions were analyzed on a 1.2 % agar-
ose gel to verify that the reactions produced single
bands of the predicted size.
Five μl of the PCR reaction was used for in vitro tran-

scription using the Ambion Megascript T7 Kit (Thermo
Fisher Scientific, Waltham, MA, USA). Reactions were
carried out following the manufacturer’s instructions
and incubated for 16 h at 37 °C. In vitro transcription
reactions were cleaned up using the AmbionMegaclear
Kit (Thermo Fisher, Waltham, MA, USA) followed by
ammonium acetate/ethanol precipitation to concentrate

the dsRNA. Pelleted dsRNA was suspended in 10 μl
RNase-free water, quantified using a NanoDrop spectro-
photometer, and the quality assessed by separating the
dsRNA on a 1.2 % agarose gel.

RNAi by injection
dsRNA was injected into the gonad of adult hermaphro-
dite nematodes as described for C. elegans [53]. Young
adults were obtained by placing IJs collected from white
traps on aNA + chol agar plate (3 g yeast extract, 5 g
peptone, 12 g agarose per liter with 2 ml of 5 mg/ml
cholesterol added after autoclaving) growing P. lumines-
cens bacteria for 68 h at 27 °C. dsRNA was injected at a
concentration of 6 μg/μl for cct-2 and 4 μg/μl fornol-5,
dpy-13 and dpy-7. The injected nematodes were re-
moved from the injection pad with a pipette using
1xPBS and placed on a rescue plate. After 1 h the nema-
todes were picked to a new plate seeded with fresh P.
luminescens and maintained at 27 °C. Three batches of
nematodes were used, representing three different bio-
logical replicates each with 15 nematodes. The progeny
of the injected hermaphrodite were screened on the fifth
day after injection. Images were taken on a stereomicro-
scope (LeicaS6 D, Leica, Germany).

RNA extraction and qRT-PCR
Total RNA was extracted in TRIzol (Thermo Fisher).
Briefly, 20 worms for Hb-cct-2 and Hb-nol-5 and 2
worms for Hb-dpy-7 and Hb-dpy-13 were picked from
the P. luminescens plate into a 1.5 ml tube with M9

Table 2 RNAi phenotypes observed in the progeny of H.
bacteriophora worms injected with dsRNA

Trial-1 Trial-2 Trial-3 Average

GFP 0 (0/53) 0 (0/95) 0 (0/127) 0 (0/127)

nol-5 (ste) 20 (35/173) 25 (29/113) 60 (92/152) 36 (156/438)

cct-2 (ste) 44 (74/165) 50 (91/179) 51 (102/198) 50 (267/542)

dpy-13 (dpy) 7 (3/42) 8 (2/25) 6 (3/43) 7 (8/110)

dpy-7 (dpy) 3 (1/26) 5 (3/53) 2 (2/98) 3 (6/177)

For each trial, percentage of observed phenotype is followed in parenthesis by
total number of progeny that had the predicted phenotype over total number
of progeny from the injection. Last column is the average of all the trials. Ste
(Sterile) and dpy (dumpy)
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dsRNA injected - gfp nol-5 nol-5 nol-5

Target gene-qPCR nol-5 nol-5 nol-5 nol-5 cct-2

Phenotype WT WT WT nol-5 nol-5
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Fig. 2 RNAi mediated phenotype and transcript changes in H. bacteriophora injected with nol-5 dsRNA. Adult H. bacteriophora hermaphrodites
that were injected with nol-5 dsRNA produced progeny with no germline and empty gonad. a. Progeny of non-injected H. bacteriophora. The area
with white dotted lines indicates the position of the gonads. b. Progeny of H. bacteriophora injected with nol-5dsRNA. c. Expression of nol-5 gene in the
progeny of nol-5 dsRNA injected worms. The y-axis represents the fold change in mRNA expression in the progeny of H. bacteriophora hermaphrodites.
The mRNA levels are normalized to nol-5 expression in the progeny of non-injected hermaphrodites (black bar). The green bar represents nol-5 levels in
progeny of gfp injected worms. The red bar represents nol-5 levels in phenotypically wild type siblings, and the blue bar represents the nol-5 levels in
worms with empty gonads. To control for off-target effects, expression of an unrelated gene (cct-2) in worms with empty gonads was determined
(brown bar). The graph was obtained by combining data from at least three independent biological replicates. Error bars indicate the standard error of
the mean. Asterisks depict the statistical significance of the observed differences in unpaired, two-tailed t-tests with P-values < 0.001 (**)

Ratnappan et al. Parasites & Vectors  (2016) 9:160 Page 4 of 9



buffer (3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 ml 1 M
MgSO4, H2O to 1 l). Nematodes were washed with M9
two more times after which 250 μl of Trizol was added.
The tubes were stored at −80 °C. On the day of RNA ex-
traction, the tubes were thawed and vortexed at max-
imum speed for 30 min at 4 °C. RNA was extracted
according to the manufacturer’s instructions. Total RNA
was treated with DNase I, Amplification Grade (Thermo
Fisher). RNA was then converted to cDNA with Verso™
cDNA Kit (Thermo Fisher). Real-time quantitative re-
verse transcription PCR (qRT-PCR) was performed in a
96-well Bio-Rad CFX96 RealTime PCR System (Bio-Rad,
Inc., Hercules, CA, USA). PCR reactions were done in
96-well optical reaction plates (Bio-Rad, Hercules, CA,
USA) using Agilent Brilliant II SYBR® Green QPCR
Master Mix. A 20 μL PCR reaction was set up in each
well with 10 μL Brilliant II SYBR Green QRT-PCR mas-
ter mix, 1/20th of the converted cDNA and 25 μM
primers. To quantify the efficiency of the primers, a
standard curve was constructed with serial dilutions of
gene-specific PCR products that were obtained by ampli-
fying cDNA from adults collected 72 h after plating as
IJs. The amplification efficacy (E = 101/-slope-1) for each
primer was calculated from the slope generated by the

standard curve. The primer sets used had efficiency be-
tween 90–100 %. Relative quantification of the amplified
gene was done by delta-delta Ct method [54]. Large
ribosomal subunit L32 protein (rpl-32) was used as an
internal control. Expression of Hba-rpl-32 was shown to
be stable in three different life stages of H. bacteriophora
(IJs and 48 h and 72 h developing nematodes derived from
IJs) before it was used as an internal reference gene. For
every gene at least three independent biological samples
were tested, each with three technical replicates. Primers
used in this study are listed in Table 1.

Results and discussion
We tested the efficacy of dsRNA delivery by microinjec-
tion on four H. bacteriophora genes with known RNAi
phenotypes. The C. elegans cct-2 (T21B10.1) gene en-
codes a component of eukaryotic T-complex chaperonin
and is expressed in most tissues. It is required for proper
folding of proteins including actin, tubulin and cyclin
[55–57]. In C. elegans, RNAi of cct-2 causes sterility, em-
bryonic lethality and protruding vulva [17, 58]. The C.
elegans nol-5 is an ortholog of human NOP58 (NOP58
ribonucleoprotein) and is involved in reproduction, em-
bryo development, and larval development. Knockdown
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dsRNAinjected - gfp dpy-13 dpy-13 dpy-13

Target gene-qPCR dpy-13 dpy-13 dpy-13 dpy-13 dpy-7

Phenotype WT WT WT dpy-13 dpy-13

Fig. 3 RNAi mediated phenotype and transcript changes in H. bacteriophora injected with dpy-13 dsRNA. Adult H. bacteriophora hermaphrodites
that were injected with dpy-13 dsRNA produced progeny with dumpy phenotype. a. Phenotypically wild type progeny of H. bacteriophora worms
injected with dpy-13 dsRNA. b. Progeny of H. bacteriophora worms injected with dpy-13 dsRNA exhibiting the dumpy phenotype. c. Expression
of dpy-13 gene in the progeny of dpy-13 dsRNA injected worms. The y-axis represents the fold change in mRNA expression in the progeny of
H. bacteriophora hermaphrodites. The mRNA levels are normalized to dpy-13 expression in the progeny of non-injected hermaphrodites (black
bar). The green bar represents dpy-13 levels in progeny of gfp injected worms. The red bar represents dpy-13 levels in phenotypically wild type
siblings, and the blue bar represents the dpy-13 transcript levels in phenotypically dumpy worms. To control for off-target effects, expression
of an unrelated gene (dpy-7) in phenotypically dumpy worms was determined (brown bar). The graph was produced by combining data from
at least three independent biological replicates. Error bars indicate the standard error of the mean. Asterisks depict the statistical significance
of the observed differences in unpaired, two-tailed t-tests with P-values < 0.001 (**)
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of nol-5 in C. elegans causes larval arrest, multivulva
phenotype, sterility and slow growth [58, 59]. Ciche et
al. [36] showed previously that knockdown of Hba-cct-2
and Hba-nol-5by soaking eggs in dsRNA also causes
sterility in H. bacteriophora, as evidenced by the absence
of visible germline and defective gonad.
In this study, injecting dsRNA of Hba-cct-2 and Hba-

nol-5 in the H. bacteriophora hermaphrodites resulted in
sterile progeny, with a noticeable lack of any germline
and eggs in the adult nematodes. The observed pheno-
type was similar to the post-embryonic phenotype de-
scribed by Ciche et al. [36], although the percentage of
the sterile progeny was lower. We observed that 40 to
50 % of the progeny of cct-2 dsRNA injected nematodes
(Fig. 1b, Table 2), and 20 to 60 % of the progeny of nol-5
dsRNA injected nematodes were sterile in three different
biological replicates (Fig. 2b, Table 2). This difference in
penetrance may be due to our examination of the
phenotype of F1 progeny of injected nematodes, and ra-
ther than in adults derived from eggs soaked in dsRNA.
For both Hba-cct-2 and Hba-nol-5, dsRNA was gener-
ated using primers previously described [36]. Microinjec-
tion as the means of dsRNA delivery has never been
reported in H. bacteriophora. Knockdown of gene tran-
scripts resulting in visible phenotypes in progeny for
both genes in three different trials confirmed that this

technique can be used to reliably knockdown gene tran-
scripts in H. bacteriophora.
We also tested two other genes, Hba-dpy-13 and Hba-

dpy-7 that were previously described to cause a dumpy
phenotype in C. elegans. Dumpy mutant nematodes are
almost half the length of the wild type nematode. Cel-
dpy-13 and Cel-dpy-7 encode two different collagen pro-
teins required for proper cuticular morphology and nor-
mal body length [60, 61]. Hba-dpy-13 was also used as a
positive control for RNAi by soaking in H. bacteriophora
[37]. Injecting Hba-dpy-13 dsRNA resulted in dumpy-
like progeny with short, chunky morphology similar to
that seen in C. elegans dpy mutants (Fig. 3b, Table 2).
Injecting Hba-dpy-7 dsRNA also caused the progeny to
be phenotypically similar to Hba-dpy-13RNAi (Fig. 4b,
Table 2). However, the numbers of dumpy nematodes
observed in both Hba-dpy-13 and Hba-dpy-7 dsRNA in-
jections were significantly lower than observed with nol-
5 and cct-2 dsRNA injections. We observed that 6 to
8 % of the progeny of dpy-13 dsRNA injected nematodes
and 2 to 5 % of the progeny of dpy-7 dsRNA injected
nematodes exhibited the dumpy phenotype across three
different biological replicates (Table 2).
We observed significant variability in phenotypic ex-

pression between the genes tested. The number of nem-
atodes with the expected phenotype ranged from 2 to
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Fig. 4 RNAi mediated phenotype and transcript changes in H. bacteriophora injected with dpy-7 dsRNA. Adult H. bacteriophora hermaphrodites
that were injected with dpy-7 dsRNA produced progeny with dumpy phenotype. a. Phenotypically wild type progeny of H. bacteriophora worms injected
with dpy-7 dsRNA. b. Progeny of H. bacteriophora worms injected with dpy-7 dsRNA exhibiting the dumpy phenotype. c. Expression of dpy-7 gene in the
progeny of dpy-7 dsRNA injected worms. The y-axis represents the fold change in mRNA expression in the progeny of H. bacteriophora hermaphrodites.
The mRNA levels are normalized to dpy-7 expression in the progeny of non-injected hermaphrodites (black bar). The green bar represents dpy-7 levels in
progeny of gfp injected worms. The red bar represents dpy-7 levels in phenotypically wild type siblings, and the blue bar represents the dpy-7 transcript
levels in phenotypically dumpy worms. To control for off-target effects, expression of an unrelated gene (dpy-13) in dumpy worms was determined
(brown bar). The graph was produced by combining data from at least three independent biological replicates. Error bars indicate the standard error of
the mean. Asterisks depict the statistical significance of the observed differences in unpaired, two-tailed t-tests with P-values < 0.01 (*) and< 0.001 (**)
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60 %. Variation in the RNAi efficacy of knockdown has
been documented previously in parasitic nematodes
[38, 39, 62, 63], with generally greater success in plant
pathogenic nematodes than in animal pathogenic nem-
atodes. Since the discovery of RNAi, the technique has
been successfully used to understand the function and
interaction of most genes in C. elegans. The inability to
reliably knockdown gene expression by RNAi in para-
sitic nematodes is perplexing as many of the genes
involved are conserved, with few exceptions [41]. Se-
quencing of the genome revealed that all the major
classes of genes required for RNAi are present in H.
bacteriophora [44]. Further analysis on the molecular
interaction of RNAi effectors in parasitic nematodes is
essential to understand the variability in RNAi efficacy.
RNAi mediated knockdown was confirmed by exam-

ining the transcript levels of the targeted genes by
qRT-PCR. Knockdown of the target gene transcripts
was determined by comparing transcript levels in pro-
geny of non-injected nematodes, nematodes injected
with gfp dsRNA, and to siblings of injected worms that
were phenotypically wild type. Off-target effects of
RNAi were checked by quantifying the transcript level
of a non-targeted gene in nematodes with RNAi
phenotype. To normalize the transcription of the genes
relative to other nematodes, ribosomal protein 32
(Hba-rpl-32) was used as an internal control. The effi-
cacy of all the primers used was tested before checking
the transcript levels in the nematodes.
In all four RNAi knockdowns, there was a significant

reduction in the mRNA levels of targeted genes when
compared to both wild type and gfp dsRNA transcript
levels. Hba-cct-2 mRNA transcripts decreased 52 %
compared to the wild type (unpaired two-tailed t-test,
t(4) = 8.82976, P < 0.001,), and 46 % compared to the sib-
ling of the affected nematode (unpaired two-tailed t-test,
t(4) = 6.34638, P < 0.01) (Fig. 1c). We observed 58 % re-
duction in Hba-nol-5 transcripts when compared to wild
type nematodes (unpaired two-tailed t-test, t(4) =
8.76645, P < 0.001), and 38 % reduction in the transcripts
when compared to the siblings (unpaired two-tailed t-
test, t(4) = 11.25743, P < 0.001) (Fig. 2c). There was a re-
duction in the Hba-nol-5 transcripts in the unaffected
siblings compared to wild type but the reduction was
not significant (unpaired two-tailed t-test, t(4) = 0.25366,
P = 0.812). Contrary to cct-2 and nol-5, there was almost
complete knockdown of the Hba-dpy-13 and Hb-dpy-7
transcripts in these nematodes. Hba-dpy-13 had 97 % re-
duction in transcript compared to wild type animals and
also sibling animals (unpaired two-tailed t-test, t(4) =
11.37752, P < 0.001) (Fig. 3c), and Hba-dpy-7 had 99 %
reduction in transcript compared to wild type animals
and siblings (unpaired two-tailed t-test, t(4) = 20.28947,
P < 0.001) (Fig. 4c). However, in the non-dumpy siblings

of the dumpy nematodes there was also a 63 % reduc-
tion in Hba-dpy-7 transcripts (unpaired two-tailed t-test,
t(4) = 4.7676, P < 0.01) (Fig. 4c). The variation in the re-
duction of mRNA transcripts by dsRNA knockdown was
surprising. Considering the clear RNAi phenotypes ob-
served for cct-2 and nol-5 targeted animals, we predicted
concomitant decreases at the transcriptional level as
measured by qRT-PCR. This discordance suggests that
there is a threshold transcript level above which the
nematodes appear phenotypically wild type, and that this
level may vary significantly across different genes,
thereby highlighting the importance of evaluating
phenotype in addition to transcript levels when deter-
mining successful gene silencing by RNAi.

Conclusions
In this study we demonstrate that gonadal microinjec-
tion is a viable method of delivering dsRNA into H. bac-
teriophora to cause gene-specific silencing in the F1
generation. Injecting H. bacteriophora with dsRNA pro-
vides another strategy that researchers can deploy to
generate F1 IJs with silenced genes. This provides a feas-
ible approach to study different aspects of nematode
parasitism including IJ recovery during infection, viru-
lence factors used during infection, and the host re-
sponse to parasitic infection.
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