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Abstract

Introduction: The voltage gated sodium channel mutation Vgsc-1014S (kdr-east) was first reported in Kenya in 2000
and has since been observed to occur at high frequencies in the local Anopheles gambiae s.s. population. The
mutation Vgsc-1014F has never been reported from An. gambiae Complex complex mosquitoes in Kenya.

Findings: Molecularly confirmed An. gambiae s.s. (hereafter An. gambiae) and An. arabiensis collected from 4 different
parts of western Kenya were genotyped for kdr from 2011 to 2013. Vgsc-1014F was observed to have emerged,
apparently, simultaneously in both An. gambiae and An. arabiensis in 2012. A portion of the samples were
submitted for sequencing in order to confirm the Vgsc-1014F genotyping results. The resulting sequence data
were deposited in GenBank (Accession numbers: KR867642-KR867651, KT758295-KT758303). A single Vgsc-1014F
haplotype was observed suggesting, a common origin in both species.

Conclusion: This is the first report of Vgsc-1014F in Kenya. Based on our samples, the mutation is present
in low frequencies in both An. gambiae and An. arabiensis. It is important that we start monitoring relative
frequencies of the two kdr genes so that we can determine their relative importance in an area of high
insecticide treated net ownership.

Keywords: Kdr, Insecticide resistance, Pyrethroids, Anopheles gambiae

Introduction
The two most widely applied vector control tools, in-
secticide treated nets (ITNs) and indoor residual
spraying (IRS) have contributed greatly to the decline
in global malaria rates [1, 2]. Pyrethroids are the most
commonly used insecticides in control programs due
to their low human toxicity and high efficacy against
vectors [3, 4]. Previously, DDT, an organochlorine,
was the most widely used insecticide for vector con-
trol with its use spread out over multiple countries
for malaria control [5, 6]. The widespread use of
these insecticides has likely contributed to the

selection of resistance across sub-Saharan Africa [7]
(http://www.irmapper.com/).
Increased resistance to pyrethroids is particularly

troubling since this is the only class of insecticides
approved by WHO for use on ITNs [3]. If ITNs are
rendered ineffective, a surge in malaria transmission
could follow [8]. Resistance to pyrethroids has been
reported from multiple sites in western Kenya [9, 10]
with both target site and metabolic resistance mecha-
nisms implicated [9–15]. DDT and pyrethroids func-
tion by binding to the voltage gated sodium channels
(Vgsc) on the mosquito’s neurons delaying the closing
of the sodium channel; prolonging the action poten-
tial and causing repetitive neuron firing, ultimately
resulting in paralysis and death [8, 16].
In Anopheles gambiae s.l., knock down resistance (kdr)

is commonly caused by mutations in the Vgsc- either
from leucine (TTA) to phenylalanine (TTT) or leucine
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to serine (TCA) [11, 17] at codon 1014. Vgsc-1014S
(formerly kdr-east) was first reported in Kenya in 2000
and has been observed to occur at high frequencies in
the local An. gambiae populations [10, 11]. Thus far,
there has been no report of the existence of Vgsc-1014F
(formerly kdr-west) in Kenya but has been reported in
Uganda and Tanzania in the recent past [18, 19]. Our
work demonstrates the emergence of Vgsc-1014F in
western Kenya in two principal malaria vectors, An.
gambiae and An. arabiensis.

Findings
Material and methods
This study was conducted in four malaria endemic
districts in western Kenya with two distinct Vector
control interventions: Rachuonyo and Nyando where
IRS (Deltamethrin in 2011 and lambdacyhalothrin in
2012) was combined with ITNs (treated with per-
methrin or deltamethrin); and in Bondo and Teso
where only ITNs are deployed [9]. Mosquito collec-
tions were performed annually between June and
September in 2011, 2012 and 2013. Mosquito sam-
pling, rearing and bioassays of emergent adults were
conducted as described in Ochomo et al. [9].

Species identification & Vgsc genotyping
DNA was extracted from whole specimens and a PCR
assay [20] was used to distinguish between An. gambiae
and An. arabiensis. DNA samples were genotyped to
identify the kdr genotype at amino acid position 1014 of
the Vgsc using a modification of the protocol by Bass et
al., [21] as described in Mathias et al., [10].

Exon sequencing of Vgsc
Previous studies in western Kenya have only reported
the presence of Vgsc-1014S mutation. Therefore, in
order to confirm the presence of Vgsc-1014F and to
determine if was a de novo origin, a subsample of the
Vgsc-1014F carriers were Sanger sequenced. Prior to
sequencing, conventional PCR was used to amplify
the exon 20 [22] which contains the 1014 locus].

Samples were sequenced at Centre for Genomic Re-
search, University of Liverpool, UK and resulting se-
quences aligned using CodonCode aligner (http://
www.codoncode.com/aligner/).

Analysis for the origin of Vgsc-1014F Mutation
Gene sequences obtained from the sequencing exons 20
and 27 were aligned using Codon Code aligner (http://
www.codoncode.com/) and the contigs transferred to
DnaSP (http://www.ub.edu/dnasp/) as FASTA files. The
files were concatenated and then run using the PHASE al-
gorithm in DnaSP [23]. The phased files were exported as
a Phylip file to TCS, a statistical parsimony software for
phylogenetic network estimation (http://darwin.uvigo.es/
software/tcs.html).

Results
Frequency of Vgsc-1014S and Vgsc-1014F in the study
sites from 2011 to 2013
We observed low frequencies of Vgsc-1014S in An.
arabiensis,even though we had high frequencies of
the same allele in An. gambiae, they were much
lower than has been reported previously [10]. We
saw a simultaneous appearance of Vgsc-1014F inboth
An. gambiae and An. arabiensis in 2012 in all four

Table 1 Frequency of Vgsc-1014F and Vgsc-1014S mutations in An. gambiae and An. arabiensis populations of western Kenya from
2011 to 2013

An. arabiensis An. gambiae

District Year N Vgsc_1014S Vgsc_1014F N Vgsc_1014S Vgsc_1014F

Bondo 2011 105 0.052 0 0

2012 129 0.031 0.047 2 0 0

2013 236 0.008 0.125 2 0 0

Nyando 2011 284 0.016 0 0

2012 82 0.012 0.024 1 0 0

2013 173 0.055 0.023 5 0 0

Rachuonyo 2011 20 0.05 0 0

2012 53 0 0.047 1 0 0

2013 136 0.018 0.011 5 0 0

Teso 2011 7 0 0 211 0.94 0

2012 4 0 0 189 0.68 0.054

2013 60 0.019 0 317 0.85 0.025
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study sites (Table 1) and thereafter compared the
mean frequencies of the genes among the three years
(Table 2). Of these, 19 samples (12 An. gambiae and
7 An. arabiensis) were sequenced. 3 An. gambiae
and 3 An. arabiensis were confirmed to be homozy-
gous for Vgsc-1014F with one An. arabiensis hetero-
zygote detected. The sequences were deposited in
GenBank (Accession numbers: KR867642- KR867651,
KT758295-KT758303).
Only a single 1014F haplotype was observed (Fig. 1),

suggesting a common origin in the species and subse-
quent interspecific transfer. However it should be noted
that our ability to resolve different haplotypes was con-
strained by the low levels of diversity at this locus and
our small amplicon length (478bp).

Discussion
This is the first report of Vgsc-1014F in Kenya, which
appears to have emerged in both An. gambiae and
An. arabiensis around 2012 and is confirmed via
DNA sequencing in multiple samples. The gene has
previously been observed in Uganda [18], then much
later in Tanzania [19] and now in Kenya. We have
developed this report to alert researchers and pro-
grammatic staff to the presence of Vgsc-1014F muta-
tion in these two important Anopheles vectors so
that they can modify their resistance marker screen-
ing procedures. It is important therefore that we start
monitoring allele and genotype frequencies so that
we can assess their impact in an area of high bednet
ownership.

Fig. 1 A TCS plot of the three haplotypes present in the populations assayed. White colour represents An. gambiae while black colour represents
An. arabiensis

Table 2 Comparison of mean frequencies of Vgsc-1014F and Vgsc-1014S mutations in An. arabiensis using ANOVA and Tukey’s test.
A similar analysis could not be done for An. gambiae as only one site (Teso) had sufficient numbers of An. gambiae

Vgsc-1014F Vgsc-1014S

Year Difference Lower limit Upper limit Adjusted P-value Difference Lower limit Upper limit Adjusted P-value

2011–2012 0.043 −0.019 0.105 0.186 −0.084 −0.877 0.709 0.953

2011–2013 0.046 −0.016 0.108 0.152 −0.032 −0.824 0.761 0.993

2012–2013 0.003 −0.059 0.065 0.99 0.052 0.741 0.845 0.982
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