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Abstract

Background: Ixodes scapularis is a vector of several human pathogens in the United States, and there is
geographical variation in the relative number of persons infected with these pathogens. Geographically isolated
populations of I. scapularis have established or are in the process of establishing in southern Canada. Knowledge of
the genetic variation within and among these populations may provide insight into their geographical origins in
the United States and the potential risk of exposure of Canadians to the different pathogens carried by I. scapularis.

Methods: Part of the mitochondrial (mt) 16S ribosomal (r) RNA gene was amplified by PCR from 582 ticks collected
from southern Canada, and Minnesota and Rhode Island in the United States. Sequence variation was examined in
relation to the predicted secondary structure of the gene. Genetic diversity among populations was also
determined.

Results: DNA sequence analyses revealed 52 haplotypes. Most mutational alterations in DNA sequence occurred at
unpaired sites or represented partial compensatory base pair changes that maintained the stability of the secondary
structure. Significant genetic variation was detected within and among populations in different geographical
regions. A greater proportion of the haplotypes of I. scapularis from the Canadian Prairie Provinces were found
in the Midwest of the United States than in other regions, whereas more of the haplotypes of I. scapularis from
the Canadian Central and Atlantic Provinces occurred in the Northeast of the United States. Nonetheless, 58% of
I. scapularis were of a haplotype that occurs in the Midwest and Northeast of the United States; thus, their
geographical origins could not be determined.

Conclusions: There is considerable genetic variation in the mt 16S rRNA gene of I. scapularis. There is some
evidence to support the hypothesis that some lineages of I. scapularis in the Atlantic and Central Provinces of
Canada may be derived from colonizing individuals originating in the Northeast of the United States, whereas
those in the Prairie Provinces may be derived from individuals originating in the Midwest of the United States.
However, additional genetic markers are needed to test hypotheses concerning the geographical origins of
I. scapularis in Canada.
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Background
Ticks are important vectors of human and animal patho-
gens [1,2]. The incidences of tick-borne diseases are
increasing [1-3], due in part, to the expansion of the
distribution of some tick species into new geographical
areas [2]. Over the past 10 years, the distribution of the
blacklegged tick (Ixodes scapularis) in North America has
continued to expand in the Upper Midwest of the United
States [4,5], and in southern Canada [6-10]. This range
expansion is important from a public health perspective
because I. scapularis is the principal vector of Borrelia
burgdorferi sensu stricto, the causative agent of Lyme
disease in North America [11]. Blacklegged ticks are also
important vectors of the etiologic agents of human gran-
ulocytic anaplasmosis (Anaplasma phagocytophilum) [12],
human and rodent babesiosis (Babesia microti) [13], and
tick-borne encephalitis (Powassan virus) [14]. The relative
occurrences of these diseases, and the prevalences of the
different strains of pathogens, vary throughout the distri-
butional range of I. scapularis [3,14-18]. Understanding
the evolutionary ecology of these vector-borne diseases
requires detailed knowledge of the biology, ecology, and
population genetics of the vector and the pathogens it
carries [19].
The distribution of I. scapularis in the United States

is divided into three geographically isolated foci: the
Northeast, Midwest, and the South [20-23]. There are
also geographically isolated populations of I. scapularis in
several provinces in southern Canada. The first of these
Canadian populations established at the Long Point pen-
insula, which includes the Long Point Provincial Park
and adjacent National Wildlife area (Ontario) was de-
scribed in the early 1970s [24], whereas the next two pop-
ulations, at Point Peele National Park and Rondeau
Provincial Park (Ontario), did not establish until the 1990s
[25,26]. Other populations have now become established
or are in the process of establishing in Ontario, Nova
Scotia, New Brunswick, Manitoba and Quebec [7,9,10,27,28].
It has been proposed that migratory passerines are trans-
porting large numbers of I. scapularis larvae and nymphs
into Canada from the United States each year during their
spring migration [7,29].
Studies have shown there are two major lineages or

clades of I. scapularis in the United States [30-33]. Individ-
uals of the Southern clade have only been reported from
North Carolina, South Carolina, Georgia, Oklahoma, Texas,
Arkansas, and Florida, whereas those of the American
clade occur primarily in the Northeast and Midwest, but
also occur in some southern states [18,30-33]. Blacklegged
ticks in southern Canada were also shown to belong to
the American clade based on analyses of the DNA se-
quences of part of Domains IV and V of the mitochondrial
(mt) 16S ribosomal RNA (rRNA) gene [34]. The absence
of individuals of the Southern clade, combined with
significant differences in genetic structure among six
established populations, suggested that I. scapularis popu-
lations in southern Canada were founded by colonizing in-
dividuals that originated from different populations in the
Northeast and Midwest of the United States [34]. In
addition, eight of the 19 haplotypes detected among
I. scapularis in southern Canada had not been reported
previously in studies conducted in the United States.
These eight haplotypes also represented 27% of all ticks
characterized in southern Canada [34]. This suggested
that the extent of the genetic diversity in I. scapularis,
based on the DNA sequences of Domains IV and V of the
mt 16S rRNA gene, was more extensive than previously
thought. Therefore, in the present study, we assessed
the extent of the variation in the DNA sequences of the
mt 16S rRNA gene for I. scapularis, both within and
among populations in southern Canada, and the Midwest
and Northeast of the United States. We also examined the
phylogeographical relationships of I. scapularis to deter-
mine the possible geographical origins of the different tick
populations in southern Canada.

Methods
Tick samples
A total of 582 I. scapularis were collected between 2000
and 2011 (Table 1 and Additional file 1: Table S1). Of
these, 70 were adventitious (i.e., ticks not associated with
known resident populations) and were collected from
hosts or the environment in different Canadian prov-
inces, while 512 ticks were collected by drag sampling
[35] at nine localities in Canada and the United States,
each of which represented an established population of
I. scapularis (Figure 1). For some data analyses, the col-
lection localities of all ticks were grouped into one of
two geographical regions. The “western” region comprised
the Canadian Prairie Provinces (Alberta, Saskatchewan
and Manitoba) and Minnesota in the Midwest of the
United States. The “eastern” region included the Central
Provinces (Ontario and Quebec) and Atlantic Provinces
(Newfoundland, Nova Scotia, Prince Edward Island and
New Brunswick) of Canada, and Rhode Island in the
Northeast of the United States.

DNA extraction and PCR amplification
The total genomic (g) DNA of each tick was extracted
using the QIAamp DNA Mini Kit™ or the DNeasy Blood
& Tissue Kit™ (Qiagen), as described previously [6,36].
A region (~400 bp) spanning Domains IV and V of
the mt 16S rRNA gene was amplified by PCR from the
total gDNA of each tick using the primers 16S − 1 (5’-
CTGCTCAATGATTTTTTAAATTGCTGTGG -3’) and
16S + 1 (5’-CCGGTCTGAACTCAGATCAAGT-3’) [31].
PCRs were performed in reaction mixtures (25 μl or
50 μl) containing PCR buffer with KCl, 1.75 mM



Table 1 The number of I. scapularis collected between 2000 and 2011 from different regions of North America

Region No. of adventitious ticks No. of ticks from established populations Total

Canada

Prairie Provinces

Alberta (AB) 2 0 2

Saskatchewan (SK) 6 0 6

Manitoba (MB) 6 90 96

Central Provinces

Ontario (ON) 12 154 166

Quebec (QC) 22 0 22

Atlantic Provinces

New Brunswick (NB) 6 0 6

Prince Edward Island (PE) 3 0 3

Nova Scotia (NS) 11 0 11

Newfoundland (NL) 2 0 2

United States

Midwest

Minnesota (MN) 0 168 168

Northeast

Rhode Island (RI) 0 100 100

Total 70 512 582

All ticks were adults, except for those from Rhode Island which were questing nymphs.
The locations of the established populations are shown in Figure 1.

Figure 1 Established populations in Canada and the United States from where I. scapularis were collected, and the relative abundance
of different 16S haplotypes within each population. Green triangles represent populations in the western geographical region: 1) Pembina
Valley Provincial Park, 2) Stanley Trail, 3) Itasca State Park, 4) Camp Ripley, and 5) St. Croix State Park, while orange triangles tick populations in the
eastern geographical region: 6) Point Pelee National Park, 7) Long Point Provincial Park, 8) Trustom Pond, South Kingstown, and 9) Hazard Island,
South Kingstown.
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MgCl2, 200 μM of each dNTP, 25 ρmol of each pri-
mer, 0.5-1.25 U of Taq polymerase, and 1–2 μl of
gDNA template. The cycling conditions used were 96°C
for 5 min, then 30 cycles of 94°C for 30 s, 52°C for 30 s
and 72°C for 30 s, and a final extension at 72°C for 5 min.
All PCR products were examined on 1.5% agarose-TBE
gels to verify that each amplicon represented a single band
of ~450 bp.

Single-strand conformation polymorphism (SSCP) and
DNA sequencing
All amplicons were subjected to single-strand conform-
ation polymorphism (SSCP) analysis, a mutation-scanning
technique that is highly effective in displaying genetic vari-
ation among amplicons (150–450 bp) that differ in DNA
sequence by one or more nucleotides [37]. The SSCP
methodology used followed that described previously
[34], except that 0–4.5 μl of DNase-free water and
5 μl of loading buffer (Gel Tracking Dye™, Promega)
were added to 0.5-5 μl of each amplicon. Where possible,
multiple amplicons of each SSCP profile type were sub-
jected to automated sequencing using primers 16S − 1 and
16S + 1 in separate reactions. Amplicons were purified
prior to sequencing. This was achieved by adding 1 μl of a
mixture containing 3 U of exonuclease I, 0.15 U of shrimp
alkaline phosphatase, and 0.7 μl of 1X PCR buffer to 10 μl
of each amplicon, and incubating the samples at 37°C for
15 min. Subsequently, increasing the temperature to 80°C
for 15 min inactivated the enzymes. The sequences of
the haplotypes have been deposited in GenBank™ under
the accession numbers HG916768-HG916804. The nu-
merical system for haplotype designation used herein fol-
lows that of Krakowetz et al. [34]. BLAST searches
(GenBank) were performed on the sequence data obtained
to determine if the haplotypes detected in the present
study were identical to those in other studies, but where
different haplotype designations are used (see Additional
file 2: Table S2).

Sequence alignment, secondary structure and
phylogenetic analyses
Sequences were aligned manually, but then modified ac-
cording to the predicted secondary structure of Domains
IV and V of the mt 16S rRNA gene that was constructed
for I. scapularis based on the models of other organisms
[38]. Phylogenetic analyses using the neighbor-joining
(NJ) method were carried out using PAUP v4.0b10 [39].
The DNA sequences of the mt 16S rRNA gene of I.
pacificus (GenBank accession no. AF309008) and sev-
eral haplotypes of the Southern and American clades
of I. scapularis (see Supplemental Table S2 for accession
nos.) [31,32] were included in the analyses. A bootstrap
analysis (1000 replicates) was used to determine the rela-
tive support for groups in the NJ tree.
Population genetics and phylogeographical analyses
The haplotype (h) and nucleotide (π) diversities of I. sca-
pularis within established populations were determined
using Arlequin [40]. Only data from the established pop-
ulations of I. scapularis were included in the analyses.
Tests for selective neutrality, Tajima’s D [41] and Fu’s FS
[42], were also performed using Arlequin. Under the
neutral model, D and FS values should be approximately
zero. Significantly negative D (p <0.05) and FS (p <0.02)
values are indicative of populations undergoing expansion,
whereas significantly positive values are characteristic of
populations undergoing bottlenecks [43]. Arlequin was
also used to conduct a Chakraborty’s test [44], which de-
termines if there were significantly more haplotypes in a
population than expected under neutrality, and to calcu-
late a measure (pairwise FST) of genetic differentiation
between each pair of populations. The significance of de-
partures of FST values from zero was tested using 1000
permutations. A hierarchical analysis of molecular vari-
ance (AMOVA) was conducted using Arlequin to deter-
mine if there was genetic structuring within and among
populations in different geographical regions. For this ana-
lysis, the nine established populations of I. scapularis were
divided into four groups based on the province (Canada)
or state (United States) in which they were located. A
Mantel test was also conducted using Arlequin (1000
permutations) to determine if there was a correlation
between genetic (FST) and geographical (km) distances
among populations.
Rarefaction curves were generated using EstimateS

[45] to estimate the total number of haplotypes that can
be expected in a sample (i.e., based on the asymptote of
the curve), and the extent to which the majority of hap-
lotypes have been sampled. These analyses were per-
formed for the populations in the western and eastern
geographical regions, and the pooled population data of
I. scapularis. EstimateS (1000 runs) was also used to de-
termine Chao 2 values, estimators of the expected num-
ber of haplotypes in a sample [46].
A minimum spanning network tree depicting the rela-

tionships of the haplotypes was produced using TCS ver-
sion 1.21 [47]. This analysis also included other haplotypes
of the American clade from Canada [34], the Northeast
(e.g., Pennsylvania, Connecticut, New York, New Jersey,
Massachusetts, Maryland and Rhode Island [30,32]), and
Midwest (e.g., Illinois and Wisconsin [30]) of the United
States (see Additional file 2: Table S2).

Results
Sequence analyses
Fifty-two different SSCP profiles were detected among the
582 amplicons (Table 2). Amplicons with the same SSCP
profile had identical DNA sequences, while those that dif-
fered in SSCP profile also differed in DNA sequence by



Table 2 The number of I. scapularis individuals of the different mt 16S rRNA gene haplotypes (HT), and the variable positions in the aligned DNA sequences

HT n N* Alignment position:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

5 6 6 8 9 0 0 0 0 1 5 6 7 7 7 7 7 8 8 8 8 8 9 0 0 0 1 2 3 3 3 3 3 5 6 6 9 0 3 6 6 7

7 0 1 8 0 3 4 5 9 2 1 4 3 4 6 7 8 0 1 2 3 4 3 4 5 9 6 2 2 4 6 7 8 8 2 3 6 5 3 4 5 3

Is–1 282 45 A A A A A - - T T T A G T A A A T T A A G T A G C A G G - G T A T G T T A G C G G G

Is–2 25 11 . . . . . - - . . . . . . . . . . . . . A . . . . . . . - . . . . . . . . . . . . .

Is–3 1 1 . . . . . - - . . . . . . . . . A . . . A . . . . . . . - . . . . . . . . . . . . .

Is–4 44 18 . . . . . - - . . . . . . . T . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–5 3 3 . . . . . - - . . . . . . . T . . . . . . . . . . . . . - . . . . A . . . . . . . .

Is–6 14 10 . . . . . - - . . . . . . . . . . . . . . . . . T . . . - . . . . . . . . . . . . .

Is–7 33 9 . . . T . - - . . . . . . . . . . . . . A . . . . . . . - . . . . . . . . . . . . .

Is–8 3 2 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - A . . . . . . . . . . . .

Is–9 11 8 . . . . G - - . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–10 2 2 . . . . . - - . . . . . . . . . . . . . . . . . . G . . - . . . . . . . . . . . . .

Is–12 2 2 . . . . . - - - . . . . . . . . . A . . . . . . . . . . - . . . . . . . . . . . . .

Is–13 24 17 . . . . . - - - . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–14 3 3 . . . . . - T . . . . . . . T . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–15 27 11 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . A . . . . . . . .

Is–17 1 1 . . . . . - T . . . . . A . . . . . . . . . . . . . . . - . . . . A . . . . . . . .

Is–20 5 5 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–21 1 1 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - A A . . . . . . . . . . .

Is–23 2 2 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . C . . . . . . . . .

Is–24 2 2 . . . . . - - . . . . . . . . . . . . . . . . A . . . . - . . . . . . . . . . . . .

Is–30 2 2 . . . T . - - . . . . . . . T . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–48 2 2 . . . . . - - . . . . . . . . . . . . . A . . . . . . . - . . . . . . . . . . A A .

Is–49 1 1 . . . T . - - . . . . . . . . . . . . . A . . . . . . . - . . . . . . . . . . . . A

Is–50 3 3 . . . . . - - . . . . . . . T . . . T . . . . . . . . . - . . . . . . . . . . . . .

Is–51 4 3 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . . . C . . . . . .

Is–52 4 4 . . . . . - - . . . G . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–53 2 2 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . G . . . . . . . . . .

Is–54 3 3 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . . C . . . . . . .

Is–55 9 5 . . . . . - - . C . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–56 2 2 . . G . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–57 6 4 . . . . . - - . . . . . . . . . . . . C . . . . . . . . - . . . . . . . . . . . . .
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Table 2 The number of I. scapularis individuals of the different mt 16S rRNA gene haplotypes (HT), and the variable positions in the aligned DNA sequences
(Continued)

Is–58 1 1 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . A . . . .

Is–59 2 1 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . . . . T . . . . .

Is–60 2 1 . . . . . - - . . . . . . . . T . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–61 1 1 . . . T . - - . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–62 4 4 G . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–63 20 12 . . . . . - T . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–64 1 1 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . A . . . . . . . . . . .

Is–65 1 1 . . . . . - - . . . . . . . . . . . . . . . . . . . . A - . . . . . . . . . . . . .

Is–66 1 1 . . . . . - - . . . . A . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–67 1 1 . . . . . - - . . C . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–68 1 1 . . . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . A . . . . T . . .

Is–69 3 1 . . . . . - - . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . .

Is–70 2 2 . . . . . - - . . . . . . . T . . . . . . . . . . . . . - . . . . . . . G . . . . .

Is–71 1 1 . . . . . - - . . . . . . . . . . . . . . . G . . . . . - . . . . . . . . . . . . .

Is–72 2 2 . . . . . - - . . . . . . G . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–73 2 2 . . . . . - - - . . . . . . T . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–74 6 6 . . . . . - - . . . . . . . . . . . . . A A . . . . . . - . . . . . . . . . . . . .

Is–75 1 1 . . . . . T T . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–76 3 3 . T . . . - - . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . .

Is–77 2 2 . . . T . - - - . . . . . . . . . . . . A . . . . . . . - . . . . . . . . . . . . .

Is–78 1 1 . . . . . - - . . . . . . . . . . . . . . . . . . . C . - . . . . . . . . . . . . .

Is–79 1 1 . . . T . - T . . . . . . . . . . . . . A . . . . . . . - . . . . . . . . . . . . .

A dot (.) at an alignment position indicates the same nucleotide as in the sequence of haplotype Is-1, while a dash (−) represents a deletion.
Abbreviation: n = number of individuals with same SSCP profile, N* = number of amplicons sequenced.
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one or more nucleotides. The DNA sequences of the 52
haplotypes varied in length from 404–407 bp and differed
from one another by 1–5 bp when aligned over 408 nu-
cleotide positions (Table 2). Genetic variation among
haplotypes was detected at 42 (10.3%) positions in the
sequence alignment. These mutational differences con-
sisted of 25 transitions, 12 transversions, four indels, and
one multiple nucleotide change. There was approxi-
mately a 2:1 ratio of purine:pyrimidine transitional changes
(18 and seven, respectively).

Sequence variation in relation to the secondary structure
Twenty-six (61.9%) of the 42 mutational changes occurred
at unpaired sites (e.g., end loops and internal loops) in
the predicted secondary structure of the mt 16S rRNA
gene, while another nine mutational changes represented
partial-compensatory base-pair changes that maintained
the secondary structure (Figure 2). A majority of the mu-
tational changes occurred within the hypervariable region
(alignment positions 154 to 279; see Figure 2). This region
comprised 126 (30.9%) of the nucleotides in the 3’ ter-
minal end of the mt 16S rRNA gene, but contained 25
(59.5%) of the variable nucleotide positions among haplo-
types. Thus, the proportion of variable positions in the hy-
pervariable region was 19.8%. In contrast, there was a
significantly (χ21 = 17.99, P <0.001) lower proportion of
variable positions (6.0%; 17 of 282 positions) in the 5’ and
3’ regions flanking the hypervariable region, which repre-
sented 69.1% of the 408 total nucleotides at the 3’ terminal
end of the gene. These two flanking regions contained 17
(40.5%) of the 42 variable nucleotide positions among se-
quence types.

Phylogenetic analysis
The tree produced from the NJ analysis of the sequence
data (Additional file 3: Figure S1) separated the 16S haplo-
types of I. scapularis into two major clades; the Southern
clade and American clade. This was supported by the re-
sults of the bootstrap analysis. However, there was little
statistical support for the different groups within the
American clade. All 582 I. scapularis characterized in the
present study belonged to the American clade.

Population genetic analyses
The haplotype diversities and nucleotide diversities of
I. scapularis within the nine established populations
ranged from 0.5994 to 0.7856, and 0.00191 to 0.00357,
respectively (Table 3). For six populations, the 7–14
haplotypes detected within each population was not sig-
nificantly different from the expected number based on
Chakraborty’s test, whereas significantly more haplotypes
were detected than expected in all three populations from
Minnesota (Table 3). The results of the Tajima’s test for
neutrality indicated that there were significant negative
departures from zero for the three tick populations in
Minnesota and the population in Pembina Valley Provincial
Park, Manitoba (Table 3). Similarly, the FS statistics of Fu
revealed that the FS values for five populations (three in
Minnesota and two in Manitoba) differed significantly
from zero. A single haplotype (Is-1) was found in all
nine I. scapularis populations and comprised 34-63% of
the ticks within each population (Figure 1). The second
most common haplotype differed among populations and
represented between 7-32% of the ticks within each popu-
lation. Comparison of the FST values revealed signifi-
cant differences between most pairs of populations except
between some populations in Manitoba and Minnesota
(Table 4). The results of the AMOVA test (Table 5) also
indicated strong genetic structure among populations
both within and among different geographical regions.
Most of the variance (94.3%) occurred within populations.
Nonetheless, there were many shared haplotypes among
populations in different geographical regions (Figure 1).
The results of the Mantel Test (Figure 3), which compared
pair-wise FST values as a factor of geographical distance
between tick populations, showed that there was a signifi-
cant association between genetic and geographical dis-
tances (b = 0.000058, r2 = 0.299, P = 0.002).
A total of 30 haplotypes were detected in five popula-

tions in the western geographical region, while 22 haplo-
types were detected in the four populations in the eastern
geographical region. The Chao 2 estimates of haplotype
richness were higher for the western populations than in
the eastern populations (41 and 34 haplotypes, respect-
ively; Figure 4). However, the results of the rarefaction
analyses showed that, although the curves for both the
western and eastern populations of I. scapularis did not
converge on an asymptote, there was no significant differ-
ence in haplotype diversity between populations of the
two geographical areas, as there was overlap in the 95%
confidence intervals of the two curves (Figure 4). Simi-
larly, when the data for all populations were pooled, the
rarefaction curve (see Additional file 4: Figure S2) did not
reach an asymptote or approach the Chao 2 estimate of
the haplotype diversity (i.e., 82 haplotypes). Therefore,
only 45 (55%) of the expected total number of haplotypes
were detected in the nine established populations of
I. scapularis.

Geographical variation
Fifteen (29%) of the 52 haplotypes detected among the
adventitious ticks and individuals from established popu-
lations in the present study were each represented by a
single tick, while four haplotypes were detected in western
and eastern Canada, and in the Midwest and Northeast
of the United States (Figure 5 and Additional file 5:
Table S3). Thirty-two haplotypes were detected among
ticks from the United States; however, only four (13%)



Figure 2 The predicted secondary structure of Domains IV and V of the mt 16S rRNA gene for haplotype Is-1 of I. scapularis. Open
circles indicate putative nucleotides within other domains of the gene [38]. Closed circles indicate deletions in the sequence of haplotype Is-1
compared to the DNA sequences some other haplotypes of I. scapularis (see Table 2). Solid arrows indicate purine and pyrimidine transitional
changes, while open arrows indicate transversional mutations, multiple changes, or indels in the DNA sequences of the other 16S haplotypes
detected in this study relative to the DNA sequence of haplotype Is-1. The box indicates the hypervariable region as defined by Smith
and Bond [53].
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were present in populations in the Midwest and Northeast.
Ticks collected from western Canada had the highest
similarity, based on the proportion of shared haplotypes,
with the ticks from the Midwest of the United States (13
of 33; 39%) rather than those in eastern Canada (7 of 36;
19%) or the Northeast of the United States (5 of 27; 19%).
The proportion of shared haplotypes between ticks from
eastern Canada and the Northeast of the United States
(7 of 26; 27%) was greater than that between ticks from
the Midwest of the United States (6 of 41; 15%) or western
Canada (19%).
The minimum spanning network tree depicting the re-

lationships among haplotypes of the American clade is
shown in Figure 6. Most (82%) haplotypes were only



Table 3 Haplotype diversity and nucleotide diversity estimates, and neutrality test results of nine established
populations of I. scapularis

Population N S h π Neutrality tests Chakraborty’s test

Tajima’s Fu’s No of haplotypes:

D Fs Exp. Obs.

Pembina Valley Provincial Park, MB 46 12 0.7807 0.00292 −1.7018* −7.3735*** 8.5 12

Stanley Trail, MB 44 7 0.6945 0.00217 −1.0354 −3.7782* 6.2 8

Itasca State Park, MN 56 10 0.5994 0.00191 −1.7473* −8.2716*** 5.0 11**

Camp Ripley, MN 56 15 0.6461 0.00240 −2.0751** −11.5757*** 5.7 14***

St. Croix State Park, MN 56 13 0.6656 0.00213 −1.9112** −12.7498*** 6.0 14***

Point Pelee National Park, ON 46 6 0.6019 0.00206 −1.2915 −2.7386 4.8 7

Long Point Provincial Park, ON 108 13 0.7856 0.00318 −1.2840 −5.5321 11.0 13

Trustom Pond, RI 50 7 0.7273 0.00316 −0.0610 −1.1404 7.2 7

Hazard Island, RI 50 8 0.7731 0.00357 −0.0852 −3.4150 8.5 10

Abbreviations: N = sample size, S = no. of polymorphic sites, h = haplotype diversity and π = nucleotide diversity. Significance levels: *P <0.05, **P <0.01 and
***P <0.001. For the state and province abbreviations, see Table 1.
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found in either the western or eastern geographical re-
gion (27 and 24 haplotypes, respectively). Haplotype Is-1,
the most common haplotype in both geographical regions
(see Additional file 5: Table S3), represented the central
haplotype of the star-shaped network tree. All other hap-
lotypes differed from the central haplotype by 1–6 bp.
Thirty-seven haplotypes differed in sequence from the
central haplotype by a single nucleotide mutation. These
included five of the seven most common haplotypes de-
tected in the present study (Is-2, Is-4, Is-13, Is-15, and
Is-63; Additional file 5: Table S3). Each of these haplo-
types represented a link (secondary node) from the central
haplotype to other haplotypes (Figure 6). Six of the eight
most common haplotypes were detected in I. scapularis
populations in both the western and eastern geograph-
ical regions. Another common haplotype present in east-
ern populations (Is-7) represented a tertiary node in the
haplotype network to six other haplotypes that were also
only detected in eastern tick populations.
Table 4 Pair-wise comparisons of geographical (km; upper di
among established populations of I. scapularis

Population 1 2 3

1 Pembina Valley Provincial Park, MB - 29 307

2 Stanley Trail, MB 0.0187 - 326 447

3 Itasca State Park, MN 0.0114 0.0110 -

4 Camp Ripley, MN 0.0418*** 0.0291*** 0.0214*

5 St. Croix State Park, MN 0.0240* 0.0231* 0.0032

6 Point Pelee National Park, ON 0.0474** 0.0416*** 0.0219*

7 Long Point Provincial Park, ON 0.0692*** 0.0743*** 0.0604***

8 Trustom Pond, RI 0.0461*** 0.0720*** 0.0847***

9 Hazard Island, RI 0.1873*** 0.2305*** 0.2590***

Significance levels: *P <0.05, **P <0.01 and ***P <0.001. For the state and province
Discussion
Fifty-two haplotypes of the mt 16S rRNA gene were de-
tected among the 582 I. scapularis individuals collected
from southern Canada, and the Midwest (Minnesota)
and Northeast (Rhode Island) of the United States. All
52 haplotypes belonged to the American clade, as de-
fined by Qiu et al. [32]. The lack of I. scapularis individ-
uals of the Southern clade in northern United States and
southern Canada is consistent with the findings of other
studies [30-32,34]. The total number of haplotypes de-
tected in the present study was greater than the 7–29
haplotypes detected in other studies of the American
clade [18,30-34]), and included 30 haplotypes not re-
ported previously. The difference in number of the
haplotypes detected among studies may be a conse-
quence of differences in sample sizes. For example,
the number of haplotypes among I. scapularis individ-
uals collected from Camp Riley in Morrison County,
Minnesota (14 haplotypes), Trustom Pond and Hazard
agonal) and genetic (FST values; lower diagonal) distances

4 5 6 7 8 9

426 543 1452 1554 2241 2246

560 1465 1565 2247 2252

123 238 1157 1272 1978 1983

- 145 1061 1186 1904 1909

0.0033 - 921 1042 1758 1763

0.0225** 0.0343*** - 188 909 914

0.0459*** 0.0604*** 0.0462*** - 738 743

0.0664*** 0.0830*** 0.0788*** 0.0701*** - 5

0.2160*** 0.2451*** 0.2393*** 0.2012*** 0.0516*** -

abbreviations, see Table 1.



Table 5 Analysis of Molecular Variance (AMOVA) for nine
established populations of I. scapularis from Canada and
the United States

Variance component df % variance Fixation index P

Among regionsa 3 3.8 ΦCT =0.03791 < 0.0001

Among populations
within regions

5 1.9 ΦSC =0.01947 < 0.005

Within populations 503 94.3 ΦST =0.05665 < 0.0001
aRegions = Manitoba (PVPP & ST), Ontario (PPNP & LPPP), Minnesota (ISP, CSP
& CP) and Rhode Island (TP & HI).

Figure 4 Rarefaction curves with 95% confidence intervals of
haplotype diversity for populations of I. scapularis in the
western and eastern geographical regions. The numbers next to
the curves indicate the total estimated number of haplotypes using
the non-parametric Chao 2 estimator. See list of abbreviations for the
complete names of localities of the tick populations.
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Island in Washington County, Rhode Island (11 haplo-
types), and Long Point Provincial Park, Ontario (13 haplo-
types) were two to three times greater than that reported
previously in these areas (3, 4 and 6 haplotypes, respect-
ively) [31,32,34]; however, at least twice as many ticks
were sampled from each of these localities in the present
study. Nonetheless, the results of the present study indi-
cate that genetic diversity in I. scapularis from northern
United States and southern Canada, based on DNA
sequences of the mt 16S rRNA gene, is considerably
greater than previously thought. Furthermore, there may
be a large number of undetected haplotypes within the
sampled areas because the Chao 2 estimate of the total
number of expected haplotypes (i.e., 82) was greater than
the 52 haplotypes detected. This is likely given that 15
(29%) of the haplotypes can be considered as rare because
only one tick of each of these haplotypes was detected in
the present study.
Nucleotide diversities within established populations

of I. scapularis were low (0.002-0.004), while haplotype
diversities were relatively high (0.60-0.79) compared to
those of some other species of Ixodes in North America
[48-51]. For example, only 1–4 haplotypes of the mt 16S
rRNA gene have been detected within populations of
Ixodes angustus, Ixodes kingi and Ixodes sculptus [48-51]
Figure 3 Pair-wise comparison of the genetic (FST) and
geographical (km) distances among the nine established
populations of I. scapularis in Canada and the United States.
compared to the 7–14 haplotypes among individuals in
populations of I. scapularis. Biological differences among
these tick species are likely explanations for the differ-
ences in haplotype number. For instance, I. angustus,
I. kingi and I. sculptus parasitize primarily small mammals
(e.g., mice, shrews, voles, ground squirrels and/or pocket
gophers [49-52], which provide limited dispersal distances
Figure 5 The number of mt 16S rRNA gene haplotypes (h) of
I. scapularis found in different geographical regions of Canada,
and the Midwest and Northeast of the United States. The
numbers inside parentheses indicate the number of haplotypes only
found exclusively in a geographical region. Also shown is the number of
haplotypes (inside yellow boxes) shared among geographical regions.



Figure 6 A minimum spanning network tree depicting the relationships of the different mt 16S rRNA gene haplotypes of I. scapularis
in the American clade detected in this and other studies [30-32,34]. Crossbars between two haplotypes indicate one nucleotide difference
in DNA sequences unless stated otherwise. The size of each circle is proportional to the number of ticks of that haplotype (for this study only).
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for ticks. In contrast, I. scapularis parasitizes a wider
diversity of animals including passerine birds [20,52],
hosts that are known to carry I. scapularis larvae and
nymphs over large distances [7,29]. Therefore, increased
dispersal distance provides a greater opportunity for trans-
fer of ticks representing different maternal lineages (hap-
lotypes) from one population to another.
Variation in the DNA sequences among I. scapularis in-

dividuals was also examined in relation to the predicted
secondary structure of Domains IV and V of the mt 16S
rRNA gene. Over half (57%) of the nucleotide variation
occurred within the “hypervariable” region of Domain V.
Mutational alterations in DNA sequence, both within and
among species of arthropod, have been shown previously
to be more frequent within this part of the gene than in
the flanking regions [48,53-58]. This suggests that there
are fewer structural constraints for mutational changes
within the hypervariable region than in other parts of
Domain V [54]. DNA sequence variation in I. scapularis
at unpaired sites (62%) was also greater than that at sites
involved in base pairing (38%) in the secondary structure.
This difference may also be associated with reduced struc-
tural constraints for mutational alterations at nucleotide
positions not involved in base pairing. In addition, substi-
tutions at nucleotide positions involved in base pairing
were more often partial compensatory base changes, ra-
ther than non-compensatory changes, hence maintaining
the integrity of the secondary structure of the mt 16S
rRNA gene. This is in agreement with the general patterns
of mutational change in rRNA genes [59].
The number of nucleotide differences in DNA se-

quence among the 52 haplotypes ranged from 1–5 bp;
however, this difference increased to 9 bp when an add-
itional 10 haplotypes of the American clade [30-32,34]
were added to the analyses. Seven haplotypes (Is-1, Is-2,
Is-4, Is-7, Is-13, Is-15 and Is-63) comprised 78% of the
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ticks collected in the present study. Of these, haplotype
Is-1 was the most common (49%), which was consistent
with the findings of other studies on I. scapularis con-
ducted in southern Canada [34], and the Midwest and
Northeast of the United States [30,32]. Haplotype Is-1
also represented the central haplotype of the minimum
spanning network. Some of the other common haplo-
types represented secondary or tertiary nodes in the net-
work. This suggests that most haplotypes were derived
from the central haplotype or one of the secondary hap-
lotypes, as a consequence of a single mutational change in
the DNA sequence of the mt 16S rRNA gene. Further-
more, the star-shaped pattern of the network tree for
I. scapularis is indicative of rapidly expanding popula-
tions [18,32], which is in agreement with the relatively re-
cent establishment of populations of I. scapularis in the
Midwest of the United States [4,60] and southern Canada
[7,9,28]. Furthermore, for the populations in Manitoba
and Minnesota, there were significant negative departures
from zero for both the Tajima’s D and Fu’s Fs tests suggest-
ing population expansion at these localities.
Range expansion and the establishment of geographically

isolated populations of I. scapularis into southern Canada
have been attributed to the transportation of large num-
bers of larvae and nymphs from the United States by mi-
gratory passerine birds [7,29]. However, the geographical
origins of these populations are unknown. Krakowetz
et al. [34] reported differences in the genetic structure
of I. scapularis between a population in southeastern
Manitoba and several populations in southern Ontario
and Nova Scotia. Subsequently, Mechai et al. [61] re-
ported differences in the frequency of haplotypes of the
mt cytochrome C oxidase subunit 1 gene (cox1) among
blacklegged ticks from different geographical regions in
Canada. It was proposed that I. scapularis populations in
different geographical regions of southern Canada may
be derived from populations in different regions of the
United States and associated with the different routes (fly-
ways) taken by passerines during their spring migration
[34]. Scott et al. [29] also suggested that there was an as-
sociation between the presence of I. scapularis and other
introduced tick species in different regions of Canada and
the different flyways of migratory passerines. Thus, black-
legged ticks introduced into the Prairie Provinces of
Canada (Manitoba, Saskatchewan and Alberta) may have
originated from endemic populations in the Midwest of
the United States (Minnesota and Wisconsin), while those
introduced into the Central Provinces of Canada (Ontario
and Quebec) may have originated from endemic pop-
ulations primarily in the Northeast of the United States
(Connecticut, Pennsylvania, New York, Massachusetts,
Rhode Island, Maine and New Hampshire), but also from
resident populations in parts of the Midwest [29,34].
Northeastern United States was also suggested as the most
likely origin of blacklegged ticks introduced into the
Atlantic Provinces (Nova Scotia, New Brunswick,
Newfoundland and Prince Edward Island) [29,34]. The
latter is supported by the results of the present study. For
example, 38% of ticks from an established population in
Lunenburg (Nova Scotia) were haplotype Is-12, a haplo-
type that had not been previously reported from other re-
gions of Canada or in the United States [34]; however, this
haplotype was detected in Rhode Island (present study).
Furthermore, nine (75%) of the 12 haplotypes found in the
Atlantic Provinces were also detected in Rhode Island,
seven of which have also been found in other parts of the
Northeast of the United States [32].
The results of the AMOVA test also revealed statisti-

cally significant genetic structuring of I. scapularis popu-
lations both within and among different geographical
regions; however, the presence of several shared haplo-
types among populations supports the hypothesis of gene
flow among populations. Nonetheless, 26 (79%) of the 33
haplotypes found in the western region (Prairie Provinces
and Minnesota) were not found in the eastern region
(Central and Atlantic Provinces, and Rhode Island), while
19 of the 26 (73%) haplotypes in the east were not found
in Minnesota or the Prairie Provinces. In addition, only 8
(32%) of the 25 haplotypes found in the three populations
in Minnesota have been reported previously from the
Northeast of the United States [30,32], which includes
four haplotypes present in Rhode Island. There was also a
significant positive correlation between the geographical
(km) distances among populations and the magnitude of
genetic differences (FST values). Statistical analyses of the
FST data also showed significant differences in the genetic
structure between some populations of I. scapularis. For
example, there was a significant difference in the popula-
tion genetic structure of I. scapularis from Hazard Island
and Trustom Pond, two localities in South Kingstown
(Rhode Island) separated by a distance of only 5 km. The
reason why the genetic structure of these two tick popula-
tions differs is unclear. Although fewer haplotypes were
detected at Trustom Pond, six of the seven haplotypes in
this population were also detected in the population at
Hazard Island. In addition, the results of the Chakraborty’s
test revealed no significant difference in the number of ob-
served and expected haplotypes for either population. In
contrast, there were no significant differences between the
populations in Itasca State Park (Minnesota), Pembina
Valley Provincial Park and Stanley Trail (Manitoba). There
were also no differences between the populations in Itasca
State Park and St. Croix State Park, or between those in
Camp Ripley and St. Croix State Park (Minnesota). A
comparison of the haplotypes among adventitious ticks
and those in established populations found in the Prairie
Provinces with those in other geographical areas (Figure 6)
revealed a greater similarity to I. scapularis in Minnesota
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than to those in the Central and Atlantic Provinces of
Canada or Rhode Island based on the proportion of
shared haplotypes. These results provide some support
for the hypothesis that the I. scapularis populations in
southern Manitoba are derived from established popula-
tions in the Midwest of the United States. However, a
large proportion (58%) of the I. scapularis individuals col-
lected in all three regions of southern Canada (Prairie,
Central and Atlantic Provinces) were of a haplotype (Is-1,
Is-2, Is-4 and Is-6) that also occurs in both the Midwest
and Northeast of the United States [30,32]. Therefore,
other genetic markers (e.g., 12S rRNA gene [31] or cox1;
[61]), in addition to the mt 16S rRNA gene, are needed to
determine the geographical origin of I. scapularis intro-
ductions into southern Canada.

Conclusion
In conclusion, genetic variation within I. scapularis was
greater than previously demonstrated based on the DNA
sequence analyses of the mt 16S rRNA gene. Further-
more, a large number of rare haplotypes may still remain
undetected. The results also indicated significant differ-
ences in genetic diversity both within and among popula-
tions from different geographical regions. There was also
a significant positive relationship between the genetic dif-
ferences between populations and the geographical dis-
tances that separated them. There was some evidence to
support the hypothesis that I. scapularis in the Prairie
Provinces of Canada are derived from individuals intro-
duced from the Midwest of the United States, while those
in the Atlantic and Central Provinces are derived from in-
dividuals that originated in the Northeast of the United
States. However, the geographical origins of a large pro-
portion of I. scapularis found in the different areas of
southern Canada could not be inferred because they were
of a haplotype that occurs in both the Midwest and
Northeast of the United States. Therefore, additional stud-
ies are needed to explore other genetic markers that may
be useful for understanding the trajectories of spread of
I. scapularis and its pathogens on a finer scale.
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Additional file 1: Table S1. The number of nymphal or adult male and
female I. scapularis collected in different years from 11 geographical
regions in North America.

Additional file 2: Table S2. Comparison of the haplotype designations
of I. scapularis for the mt 16S rRNA gene used in the minimum spanning
network tree (see Figure 6) of the present study in relation to those
(e.g., haplotype, specimen number or GenBank accession no.) used in
previous studies.

Additional file 3: Figure S1. Neighbor-joining tree depicting the
relationships of the 52 mt 16S rDNA haplotypes of I. scapularis detected
in the present study. Also included are an additional 10 haplotypes from
other studies of the American [32,34] and Southern clades [31,32].
Numbers above branches indicate the bootstrap values (>70%). The scale
bar represents the inferred substitutions per nucleotide site. Haplotypes
identical to those of haplotypes A-M of Qiu et al. [32] are indicated by an *.

Additional file 4: Figure S2. Rarefaction curve (with 95% confidence
intervals) of the haplotype diversity for the I. scapularis populations
sampled in the present study. The number next to the curve indicates
the total estimated number of haplotypes using the non-parametric Chao
2 estimator. See list of abbreviations for the complete names of localities
of the tick populations.

Additional file 5: Table S3. The number of I. scapularis of the different
mt 16S rRNA gene haplotypes collected from different geographical
regions.
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